
Tags: A Brief History of Tags Rich Rosen

How to use a tag-based approach 10

Caching: Using JCache to Save Money Nigel Thomas

Application performance depends on efficient data distribution 36

XML & Java: XML Data Binding with E. Mooney & J. Fialli

JAXB and UBL Can you live without SAX or DOM? 46

Feature: Performance of Java Compilers: Haralambos Marmanis

An Empirical Study Microtuning your application 52

Feature: J2ME Clients with Jini Services N. Patil & R. Dearing

Develop a highly portable, resilient service-oriented architecture 64

Labs: P800 by Sony Ericsson Jason R. Briggs

How well does the P800 perform when running Java apps? 72

Artificial Intelligence: Sex Machine Bean Mike Fichtelman

A Java neural network built on the Agent Building and Learning Environment 76

Labs: Ensemble Glider by Ensemble Systems Ron Phillips

An integrated development toolkit that accelerates J2EE development 82

Labs: ObjectAssembler 2.5 Enterprise Edition Adam Chace

by ObjectVenture, Inc. A visual “component” approach 84
SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL AUGUST 31, 2003

From the Editor
What’s in a Specification?

Alan Williamson pg. 5

Viewpoint
Dial Tone for Business Apps

Glen Martin pg. 6

J2EE Insight
Too Much Innovation!
Joseph Ottinger pg. 8

J2SE Insight
Testing, Testing...
Jason Bell pg. 44

J2ME Insight
Interesting Technologies

Glen Cordrey pg. 62

JSR Watch
From Within the Java

Community Process Program
Onno Kluyt pg. 94

HIT THE GROUND RUNNING WITH THE NEW ORACLE9i AS JAVA EDITION!

www.JavaDevelopersJournal.com

details on pg. 91

Web Services Edge West 2003

Sept. 30–Oct. 2, 2003
Santa Clara, CA

Introducing the integration technology

YOU WANT.
Introducing the Sonic Business Integration Suite. Built on the

world’s first enterprise service bus (ESB), a standards-based

infrastructure that reliably and cost-effectively connects appli-

cations and orchestrates business processes across the

extended enterprise. Extend your reach, cut costs and enhance

your business agility. Thus eliminating one more thing –

your headaches. To learn more,visit www.sonicsoftware.com.
Connect_Everything.

Achieve_Anything.™

Business Integration Suite

WE’VE ELIMINATED THE NEED
FOR MONOLITHIC BROKERS.
THE NEED FOR CENTRALIZED
PROCESS HUBS. THE NEED
FOR PROPRIETARY TOOL SETS.

© 2003 Zero G Software, Inc. Zero G, Zero G Software, and InstallAnywhere are trademarks or registered trademarks of Zero G Software, Inc. All other trademarks are property of their respective owners.

Why do industry leaders

choose Zero G?

Because partnerships aren’t a catch phrase at Zero G - they are our liveli-

hood. We know that our success depends on yours.Whether you’re a sin-

gle-product developer or a multi-national corporation, we deliver the most

innovative, scalable software deployment solutions in the industry -

InstallAnywhere® and PowerUpdate®. But, more importantly, we deliver a

team of skilled professionals who are committed to the partnership that

starts the minute you download one of our products.That’s why industry

leaders like Sun Microsystems, Novell and Borland choose us.

Your software deployment partner

www.ZeroG.com

Made in Borland® Copyright © 2003 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries. All other marks are the property of their respective owners. • 20529.2

Borland® JBuilder® makes the fast faster because it works the way you work.

It knows what you need to do next, no matter what your style. JBuilder gives

you an active voice at every stage in the development process and is the devel-

oper's access point into the Borland Application Lifecycle solution — best-in-

class products integrated to help the whole development team make

better software, faster. JBuilder — the #1 development environment for building

any type of Java application: Web, Enterprise, Mobile, and Web Services.

WORK THE WAY YOU WANT.

DEVELOP YOUR JAVA™ APPLICATIONS FASTER.

BUILD IN PERFORMANCE AND QUALITY FROM THE START.

g o . b o r l a n d . c o m / j 1

New JBuilder ® 9

5June 2003www.JavaDevelopersJournal.com

International Advisory Board
AAjjiitt SSaaggaarr (Independent)

AAllaann WWiilllliiaammssoonn (Independent)
BBiillll RRootthh (Sun)

BBllaaiirr WWyymmaann (IBM)
CCaallvviinn AAuussttiinn (Sun)

EErriicc SSttaahhll (BEA)
JJaassoonn BBeellll (Independent)

JJaassoonn BBrriiggggss (Independent)
Jeerreemmyy GGeeeellaann (SYS-CON)

JJooee OOttttiinnggeerr (Independent)
JJoonn SStteevveennss (Apache)

RRiicckkaarrdd ÖÖbbeerrgg (Independent)
JJooee WWiinncchheesstteerr (IBM)
AAaarroonn WWiilllliiaammss (JCP)

Editorial
Editor-in-Chief: AAllaann WWiilllliiaammssoonn

Editorial Director: JJeerreemmyy GGeeeellaann
Executive Editor: NNaannccyy VVaalleennttiinnee

J2EE Editor: JJooee OOttttiinnggeerr
J2ME Editor: GGlleenn CCoorrddrreeyy
J2SE Editor: JJaassoonn BBeellll

Contributing Editor: JJaassoonn RR.. BBrriiggggss
Contributing Editor: AAjjiitt SSaaggaarr

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: LLoouuiiss FF.. CCuuffffaarrii

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy
JJeennnniiffeerr VVaann WWiinncckkeell

Online Editor: LLiinn GGooeettzz
Technical Editor: BBaahhaaddiirr KKaarruuvv,, PPhh..dd..

Writers in This Issue
Jason Bell, Jason R. Briggs, Adam Chace,

Glen Cordrey, Ron Dearing, Joe Fialli,
Mike Fichtelman, Vlad Kolarov, Onno Kluyt,
Babis Marmanis, Glen Martin, Philip Milne,

Ed Mooney, Joseph Ottinger, Nikhil Patil,
Ron Phillips, Rich Rosen, Nigel Thomas,

Alan Williamson, Joe Winchester

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9600

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2003 by SYS-CON Publications, Inc. All rights

reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechan-

ical, including photocopy or any information storage and
retrieval system, without written permission. For promotional

reprints, contact reprint coordinator Carrie Gebert, carrieg@sys-
con.com. SYS-CON Media and SYS-CON Publications, Inc.,

reserve the right to revise, republish and authorize its readers
to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trade-
marks of Sun Microsystems, Inc., in the United States and other

countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these

pages are trade names, service marks or trademarks of their
respective companies.

his past month gave me a
newfound respect for specifi-
cation writers. I remember
when James Davidson mar-
shaled the early Servlet API
and the lively discussions that

ensued on the mailing lists, basically
coordinating the entire operation (no
JCP in those days, eh?!). The point is, at
least there were discussions and, more
important, a formalized document was
produced at the end of the process.
This past month I found myself dab-
bling in a number of technologies that
sat outside the comfort of Javaland.

For a project I’m involved with
(Blog-City), I was tasked with building
the XML-RPC interface for the widely
used Blogger API. This XML-RPC API
has a handful of methods for updating
your blog site remotely, enabling you
to view recent posts, upload and edit
posts, and all the normal things you
would expect. All seems pretty simple
so far, but the problem is that the doc-
umentation for this API is thin on the
ground, and the one HTML page that
does exist is over a year old. A trawl
through the mailing list archives
shows a lot of frustrated would-be
users of their XML-RPC left out in the
cold.

I did manage to figure it out even-
tually by looking up the source code
from one of the SourceForge client
projects to see what results they were
expecting from the server. My aim was
not to build a client, but the server side
of the fence, so I wanted to make sure I
caught all the different calls that could
be sent to me. Although I have to say
the irony wasn’t lost on me that one of
the world’s leading blogging sites
couldn’t keep a page on their own API
up-to-date!

Having now drafted the overall pro-
tocol flow, the job of actually providing
the server functionality was next on
my list. A quick look in Google and I
discover the wonderment that is
known as Apache’s XML-RPC library.
This was simply a joy to use. Take a
single JAR file, easy-to-follow instruc-
tions, and within three lines of code, I

had a complete server running that
accepted and processed XML-RPC
requests. No special classes or inter-
faces to implement. No complicated
descriptor files to maintain. It just
worked, straight out of the box so to
speak.

The whole process was a resound-
ing success. But as the day ended, I
reflected on the whole situation and
how it highlighted the importance of
standards bodies and specifications.

In many respects the Java world is
lucky; by and large, we seem to do it
right. We keep it open and try to
involve as many people as possible.
After my recent experience, I now
think of Blogger as the Microsoft of the
blogging world. There was no sign of
any openness or even an effort to
involve the community in the design
and maintenance of their API. It was
their way or the highway. Legions of
client-side tools had come to accept
the fact that they would need to keep
an eye on the main server and contin-
ually update their own software for
changes. Because one day, it just might
not work.

As we know, such blind ignorance
of the world around doesn’t work.
There are alternatives to the Blogger
API, much better APIs in terms of doc-
umentation and proper version con-
trols. These APIs, I am sure, will persist
far longer than the Blogger API, simply
due to the fact that there is a published
specification.

For this reason, I am very happy to
be in the Java camp as opposed to the
C# (a.k.a. .NET) camp. At the end of
the day, I feel secure knowing that
when I call a particular method, it’s
going to be there the next time I make
the call, and the next time, and so on.
One day it isn’t going to stop working
because someone decided to tweak a
method signature.

We take specifications for granted
at times and, on behalf of the commu-
nity, for all those who take the time to
formalize the standards we rely on, I
thank you. Keep up the good work and,
more important, keep listening!

What’s in
a Specification?

FROM THE EDITOR

Alan Williamson, when not
answering your e-mails and
working on the next issue of JDJ,
heads up a small team dubbed
the “Thunderbirds of the Java
industry,” providing on- and off-
site rescue for Java projects in
trouble. For more information
visit www.javaSOS.com.
You can also read his blog:
http://alan.blog-city.com.

alan@sys-con.com

Alan Williamson
Editor-in-Chief

J2SE
H

O
M

E
J2E

E
J2M

E

T

round 15 years ago there was a cascad-
ing switch failure in the telephone net-
work along the Eastern Seaboard of the
United States. Phones stopped work-
ing. So did air traffic control, because
information about air traffic was com-
municated between control towers
using the phone network.

The failure was caused by incom-
patible implementations of the inter-
switch trunk protocols. These specs,
while very long and detailed, are nec-
essarily imperfect. With the best of
intentions, different development
teams interpreted the specs in differ-
ent ways. When one switch started to
fail, it sent out messages its neighbors
didn’t understand, and they failed. And
so on, up and down the coast.

Such failures don’t happen very
often, because the standards are very
good, the implementations are faith-
fully executed, and the systems are
thoroughly tested. This stems from
business motivations that make quality
the highest priority.

When I moved from telecoms to
databases, I was frankly appalled at the
lack of formal specification and test-
ing. Eventually I realized that this was
an optimization with different goals.
Business applications aren’t like the
phone network, which has to be all but
100% reliable – when was the last time
you didn’t get a dial tone? Failures are
simply unacceptable.

Failures in e-mail and back-office
applications are more acceptable in part
because their scope is limited – between
the applications are human correcting
abilities and response times. When sys-
tems go down, we restart them and sup-
pliers don’t necessarily notice.

So why am I bringing this up?
Web services are turning back-

office and desktop applications into
something that’s more like the phone
network than what we’re used to.
Systems connected directly to one
another lose those human correcting
abilities and response times.

Reliability is more important in a
world in which applications from dif-
ferent vendors written in different lan-
guages with different frameworks run-

ning on different hardware all have to
interoperate correctly. Just as with the
phone network, Web services will fail
unless we have good specs faithfully
implemented and thoroughly tested.

Good specs need to be thorough
and unambiguous. If different “correct”
implementations produce different
results, how will programmers and
consumers use them?

Faithful implementations need to
follow the specs, but it is easy to find
standards whose implementations are
deliberately incompatible. HTML and
Kerberos come immediately to mind.

The Java Community Process (JCP)
addresses these issues by requiring that
a specification be accompanied by a
Technology Compatibility Kit (TCK) and
a Reference Implementation (RI). The
RI shows that the specification can be
implemented, and to unearth ambigui-
ties. The TCK verifies that the RI and
any later implementations are faithful.

The value of Java standards depends
on the completeness of these elements,
and the integrity of those who imple-
ment them. If we measure that in terms
of adoption, we’re doing very well.
Analysts estimate that there are about 3
million Java developers, and there have
been over 1.3 million downloads of the
J2EE platform 1.3 SDK.

There are around 15,000 tests in the
Compatibility Test Suite (CTS) for J2EE
version 1.3, and that number will
increase substantially for version 1.4.
The thoroughness provides assurance
of portability of applications.

Application portability is the Java
platform’s “dial tone,” thus the specifi-
cations are only available to those who
commit to run the tests and ship only
compatible implementations.

This is why developers and deploy-
ers need to be concerned with those
who may claim to implement a specifi-
cation, but who fail to demonstrate
compatibility by running the tests.

Next time you’re thinking about
what platform to use for Web services,
remember these questions: Is there an
unambiguous specification? Is there a
thorough test suite? Has your vendor
run and passed the tests?

Dial Tone for
Business Apps Glen Martin

A

VIEWPOINT

6 June 2003 www.JavaDevelopersJournal.com

President and CEO:
FFuuaatt AA.. KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com

Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com

Adverting Sales Manager:
AAlliissaa CCaattaallaannoo alisa@sys-con.com

Associate Sales Managers:
CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com

KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com

Associate Editors:
JJaammiiee MMaattuussooww jamie@sys-con.com

GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com

Online Editor:
LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com

Lead Designer:
LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com

Art Director:
AAlleexx BBootteerroo alex@sys-con.com

Associate Art Director:
RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com

Assistant Art Director:
TTaammii BBeeaattttyy tami@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com
CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Accounts Receivable:

KKeerrrrii VVoonn AAcchheenn kerri@sys-con.com

Financial Analyst:
JJooaann LLaaRRoossee joan@sys-con.com

Accounts Payable:
BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Conference Manager:
MMiicchhaaeell LLyynncchh michael@sys-con.com

Customer Relations
Circulation Service Coordinators:

NNiikkii PPaannaaggooppoouullooss niki@sys-con.com
SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com

JDJ Store Manager:
RRaacchheell MMccGGoouurraann rachel@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Glen Martin is J2EE strategist at
Sun Microsystems, and leads the
marketing and product manage-
ment team responsible for Java

Web services and J2EE. Glen par-
ticipated in the EJB expert

group, and wrote the J2EE 1.3
requirements document and

J2EE 1.4 concept document. He
has 14 years of broad industry

experience in technical and mar-
keting roles, developing prod-

ucts ranging from packet switch-
es to development tools and sev-

eral points in between.

glen.martin@sun.com

8 June 2003 www.JavaDevelopersJournal.com

s I look over my choices for various
tasks, I’m a little unsettled at how
many choices I have, what they do, and
how they interoperate. I’m not going to
be the one to say that innovation is a
bad thing, but too much innovation
probably is a bad thing. In software
design, it usually means the innovator
hasn’t looked into appropriate technol-
ogy enough to know how to use what’s
available, so a new technology, a new
mechanism, is invented. Witness
BlueDragon, Vignette StoryServer,
Velocity, Cocoon, XTP, CFMX, and JSP:
all attempt to solve the same problem,
albeit in different ways.

That means that people wanting to
generate active content have a lot of
choices: master CFML, Vignette’s
deployment, Velocity’s templating syn-
tax, Cocoon and XSL, Resin’s XTP, or
JSP’s various oddities; we can throw in
other variants like ATG Dynamo…it
goes on and on, even without necessar-
ily leaving Java. (Leave out the Java
requirement and it gets worse: PHP, ASP,
Tcl, mod_perl, CGI itself, etc.) No longer
is generating content a simple decision,
and while each technology has
strengths and weaknesses, what I’ve
found is that, in general, each “innova-
tion” is a marketing tool, a result of lazi-
ness in researching available technolo-
gy, or an attempt to lock in customers
to proprietary mechanisms.

I’ve used most of these technolo-
gies, and I find myself using JSP for
presentation, with WebWork providing
the activation framework, and my own
persistence framework handling data
storage. Why? The real reason is
because they’re the best straight-line
solution I see. I don’t want to impress
my peers with my continued mastery
of technology for technology’s sake; I
want to impress my peers by not need-
ing to trumpet how cool my tools are,
by having a system that’s under the
radar. JSP may not be very impressive,
but it gets the job done, and I don’t
have to spend time teaching people
how to use it. WebWork takes a little
getting used to for some people, but
I’ve found that the payoff in discussing
action invocations is well worth the
time it takes. My persistence frame-

work (PortalWizard) is based on simple
DAO abstractions. The innovation fac-
tor isn’t very high, but then again, I’m
able to roll up applications that are
very flexible in a very short time.

I don’t want to focus on presenta-
tion. I don’t care, really, how my actions
are called. Storage is something I only
worry about if it’s too slow or incorrect.
I could try to innovate here; I could try
to write a one-size-fits-all
solution…but I don’t care. I want to get
the application working as a whole.

So when do I think you should
innovate?

When you have little choice, that’s
when. The first step should always be
investigation, and thorough investiga-
tion at that. That means actually using
the technology at hand and pushing its
limits to make sure it can’t do what you
need before you start blazing a new
trail that won’t help anyone in the long
run. In general, what I’ve found is that
people don’t innovate to improve cur-
rent technology; they innovate to see
their names in lights, to impress others,
or simply to get out of doing technolo-
gy assessment. Innovation shouldn’t be
horizontal. It should be vertical. An
innovation’s strength should be so clear
to those who understand it that using
an alternate technology seems
unsound. CGI was nice, for example,
but having a way of executing content
in the server is a Better Thing, because
you don’t waste time starting up new
processes. This was an innovation,
something new, something necessary.
Coming up with lateral technologies
that don’t radically improve things is
wasted time. (Consider Velocity, which I
don’t use – it’s a templating mechanism
that I should use, because it fills some
needs I have in fantastic ways. It’s later-
al, but the way it renders is very nice. It
gets my personal seal of approval.)

Innovation is good; it’s even neces-
sary. Nobody claims the technology we
have is enough – not fast enough, not
good enough, not complete enough.
However, unbridled innovation is hurt-
ing our industry more than it’s helping
by breeding underpowered technology
and clouding the market’s vision. It’s
time to curb it.

Too Much
Innovation!

A

J2EE INSIGHT

Too Much Innovation!
As I look over my choices for

various tasks, I’m a little unset-

tled at how many choices I have,

what they do, and how they

interoperate.

A Brief History of Tags
Now that Sun has provided

some standards for custom tags

in the form of JSTL, and has

promised additional support for

these standards in JSP 2.0, let’s

look at how we got to this point

in tag history, and where we’re

going in the future.

Using JCache to
Save Money

This article looks at some of

the strengths and weaknesses of

various caching architectures,

examines how they fit into the

surrounding J2EE and other

ecosystems, and pinpoints each

one’s “sweet spot.”

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com) and is
a frequent contributor to open
source projects in a number of

capacities. Joe is also the acting
chairman of the JDJ Editorial

Advisory Board.

josephottinger@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

8

10

36

Joseph Ottinger
J2EE Editor

26XML
Serialization of

Java Objects

1.866.228.3781
www.empirix.com

FIVEFIVE FFACTSACTS ABOUTABOUT

WEB WEB APPAPP TESTINGTESTING

OOTHERTHER VENDORSVENDORS

DON’TDON’T WWANTANT YYOUOU TTOO KNOKNOWW..

It’s time to get the facts about Web app testing. See why IDC calls Empirix
“a fast-growing leader in Web testing.”* And learn how to get the same results
as leading e-TEST™ suite customers like US Bank, British Telecom, and Ceridian.

Get your FREE Web App Testing Fact Pack, including:
• 10 Questions To Ask When Comparing Web App Testing Vendors.
• Newport Group Whitepaper: Evaluating Critical

Technology Differences Behind Automated Testing Tools
• Empirix Whitepaper: 25+ Reasons Web Apps Don’t Scale
• Your own trial copy of e-TEST suite software

To get your Fact Pack:
• Call: 1.866.228.3781
• Visit: www.empirix.com/know
• Email: know@empirix.com

10 Questions to
Ask When

Comparing
Web App Testing

Vendors

*Source: IDC Bulletin, The Distributed
Automated Software Quality Tools Market
Forecast and Analysis, 2001-2005, July 2001.

© 2003 Empirix Inc. Empirix and e-TEST suite are trademarks
of Empirix Inc. All other names, products or services are trade-
marks or registered trademarks of their respective companies.

With some Web app testing vendors, the thing to ask yourself isn’t "what are they selling" but "what are they hiding"?
Consider these five facts:

FACT #1: It’s hard to test dynamic, complex Web apps with a tool originally built to test client-server apps.

FACT #2: It’s even more complicated when you have to manually develop test scripts using a proprietary programming language.

FACT #3: Developing separate scripts for functional tests, load tests, and performance monitoring is inefficient and unnecessary.

FACT #4: You don’t have to put up with restrictive licensing agreements, endless training, and expensive consultants.

FACT #5: You can download our free evaluation and test it against your application in the same time it takes to watch their stale demo.

10 June 2003 www.JavaDevelopersJournal.com

ustom tags in JavaServer Pages have
come a long way since their inception.
Now that Sun has provided some stan-
dards for these tags in the form of JSTL
(and the up-and-coming JavaServer
Faces), and has promised additional
support for these standards in JSP 2.0,
let’s look at how we got to this point in
tag history, and where we’re going in
the future. (In addition, let’s look at
how we can use the JSTL taglibs and
the Struts Taglibs that support the JSTL
expression language right now.)

Tag-based approaches to Web appli-
cation development are nothing new.
Their origins can be traced back to
HTML (since they mimic HTML’s syn-
tax), and are represented by such varied
approaches as SSI, Macromedia’s
ColdFusion, Microsoft’s Active Server
Pages (ASP), and, of course, JSP.

JSP: Model 1 vs Model 2
One of the big problems with JSP

Model 1 was that it lent itself to bloated
“monolithic JSPs” that combine pro-
gramming logic and presentation for-
mat in one module. Monolithic JSPs
violate the principle of “Separation of
Content from Presentation,” to be sure.
It’s only when you have to maintain
such JSPs in production applications
that you begin to understand the
importance of that principle in prac-
tice.

JSP Model 2 is an approach to Web
application development that adheres
to the Model-View-Controller (MVC)
paradigm. Sun’s vision for Model 2 is
that the controller would be a servlet,
the model would be represented by
JavaBeans (or EJBs in more sophisticat-
ed applications), and the view would be
comprised of JSPs that contain only
presentation formatting constructs (i.e.,
no code). The presence of Java code in
a JSP leads to the previously mentioned
“monolithic JSP” syndrome, where data
access and manipulation logic that
belongs in the controller or model
component of the application finds its
way into the view component (the JSP).
The intermixing of code with presenta-

tion formatting constructs results in a
cluttered, unwieldy page that’s not only
difficult to maintain, it’s not clear who
is supposed to maintain it.

Custom JSP tags, a feature added to
the JSP specification in version 1.1,
makes it possible to achieve this
desired separation of code from for-
matting. By encapsulating functionality
in a single atomic entity that can per-
form complex processing that would
have required a substantial amount of
Java code, tags reduce (if not eliminate)
the amount of code within a JSP page.
(By code, I mean both scriptlets and
the awkward JSP “expression” state-
ments that make simple variable
assignments more cumbersome than
necessary.)

Well-designed tags allow a page
designer to address and access data
from the model that’s constructed and
manipulated by the controller. The
decision about which data goes into
the model (and which JSP view to
employ for presentation) is in the
hands of the controller. Thus, all a JSP
developer needs to worry about is the
layout of data already accessed and
organized for presentation. (At least,
that is the ideal – MVC frameworks
encourage but do not enforce this sep-
aration.)

Historical Perspective: Programmatic
and Template Approaches

Let’s briefly examine how we got to
where we are today, and what part tags
played in this story.

Historically, Web application devel-
opment approaches have fallen into
two broad categories: programmatic
approaches and template-oriented
approaches. CGI (especially Perl CGI
scripts) and the Servlet API fit into the
programmatic category. Server Side
Includes (SSI) and proprietary frame-
works like ColdFusion fit into the tem-
plate category.

The defining difference between
these approaches is the focus of the
page presentation object – the “view” in
Model-View-Controller parlance. If the

primary content of the view compo-
nent is code, interspersed with a few
HTML formatting constructs, then we
are talking about a programmatic
approach. If the view component is
basically an HTML page (or a page in
some other target language such as
WML or SMIL), with some embedded
programming constructs, then we’re
talking about a template approach.
More often than not, a template
approach would make use of special-
ized tags that looked like HTML but
were not part of the HTML language.
These were server-side tags that per-
formed conditional processing, itera-
tion over a set of query results, and
other complex application functions.

Naturally, these are arbitrary catego-
rizations, and few approaches fit neatly
into either one. PHP, for example, is
often referred to as a template
approach, yet a PHP module often con-
tains more code than formatting. A
ColdFusion module, on the other hand,
looks structurally like an HTML page,
but many also contain database
queries in SQL.

Hybrid Approaches
Hybrid approaches abound, trying

to be the best of both worlds by includ-
ing page formatting and code con-
structs in one module. Microsoft’s
Active Server Pages and Sun’s
JavaServer Pages (specifically JSP Model
1) fit into this nebulous category, and
both are, of course, very popular.

However, this combination of code
and formatting in one module often
hurts rather than helps. First, it’s a vio-
lation of the aforementioned principle
of “Separation of Content from
Presentation.” Having both content and
presentation in the same module binds
the content to a single presentation for-
mat. If a new presentation format is
desired – either a new HTML page lay-
out or a completely different format
such as XML/XSLT – a new module that
replicates a good portion of the old
module must be created. Such replica-
tion naturally lends itself to problems

A Brief History
of Tags
Using a tag-based approach Rich Rosen

CJ2
SE

H
O

M
E

J2
E

E
J2

M
E

TAGS

BEA and WebLogic are registered trademarks, and BEA WebLogic Workshop is a trademark of BEA Systems, Inc. © 2002 BEA Systems, Inc.

The fastest route to enterprise Web services.

Developing Web Services after WebLogic Workshop.

Developing Web Services before WebLogic Workshop.

If getting dinner via a spear strikes you as less than efficient, you’ll appreciate BEA WebLogic
Workshop™. This unique development framework eliminates tedious and time-consuming
steps, while you build Web services, create new applications and tackle the toughest integration
challenges. Plus, you’ll have all the support of our dev2dev developer community. To see how
BEA WebLogic Workshop can radically simplify your Web services development, download it
today at dev2dev.bea.com/useworkshop.

12 June 2003 www.JavaDevelopersJournal.com

as the application grows more complex.
(The ability to include common page
fragments that access and manipulate
content helps us somewhat, but does
not eliminate the problem.)

Then there is the question of “who
owns this module?” Is it the Web
designers, who are responsible for the
page design and layout? Or the pro-
grammers, who are responsible for pro-
viding dynamic access to the data that
populates the page? If designers want
to modify the page layout, do they get
to modify the ASP or JSP page them-
selves? If programmers need to change
the code within an ASP or JSP page,
what do they do if that change breaks
the page presentation?

In practice, designers produce
HTML mockups of pages that are then
translated into JSPs by programmers.
This means that even the slightest
change to a page layout requires a
remockup of the page layout that’s then
retranslated into an ASP or JSP by pro-
grammers. What a waste of resources!
Every time the page layout changes, a
programmer must get involved, tweak-
ing (or totally reworking) the ASP or JSP
page. Why?

Because for all the hype about ASPs
and JSPs being “friendlier” than pure
programmatic solutions like CGI scripts
and Java servlets, they aren’t so “friend-

ly” that you would hand them to page
designers to work on themselves. This
is partly because both ASPs and JSPs
have historically required the inclusion
of significant amounts of code to per-
form their tasks, and designers are gen-
erally not trained as programmers.

Tag, You’re It
It’s practically impossible to elimi-

nate programming constructs from
such a page entirely – how could we
support variable content on a page
(including a variable number of rows
displayed from the results of a database
query) without logic constructs that
support iteration and conditional pro-
cessing? Sure, we could write code that
produced a complete HTML table con-
taining the formatted results of a query,
but this is another violation of the con-
tent/presentation separation principle.
Programmers are writing HTML in their
code – the very thing we’re trying to get
away from. Furthermore, page design-
ers have very little control (beyond CSS
styles) over the presentation of an
already formatted table.

Tag-based approaches are one solu-
tion to this problem. A small set of tags
that support conditional processing,
iteration, external resource inclusion,
and common formatting tasks could be
developed. Macromedia’s ColdFusion
product, originally developed by the
Allaire Corporation, gained popularity
by providing such tags as part of its
application platform. ASP and JSP fol-
lowed suit, but did not provide all the
necessary puzzle pieces (i.e., code was
still needed within ASP and JSP pages
to perform most nontrivial tasks).

Both Sun and Microsoft sought to
fill that gap by offering developers the
capability of designing their own cus-
tom tags. (ASP calls them “custom con-
trols”.) This capability came without a
lot of guidance from the vendors, and
standards have been slow in coming.
While a product like ColdFusion
already had well-defined iterative and
conditional constructs, JSP and ASP
developers had to construct their own.

The developers of Struts, an
MVC/Model 2 framework from the
Apache Jakarta project, wrote their own
set of tag libraries that provided a vari-
ety of powerful functionality. These
included tags to perform processing
logic (struts-logic), production of
HTML elements (struts-html), and
interaction with JavaBeans (struts-
bean). They have been available since
the release of Struts 1.0 and served to
fill in many of the gaps that were pres-

ent in the JSP development process. As
Struts’ popularity grew, so did the need
for standard tags that performed these
functions in a consistent way across all
JSP-based applications, not just those
written in Struts.

Sun finally came through with some
guidance of their own: a specification
for a standard set of tags known as the
Java Standard Tag Library (JSTL). The
tag specifications combine the func-
tionality associated with some of the
Struts taglibs with many of the original
ColdFusion tags. In addition to the tags
themselves, the JSTL specification also
defines an expression language (EL) for
accessing data components from the
request context using a simplified nota-
tion that is a major improvement over
code-oriented methods for accessing
such data.

Jakarta developers who had been
working on other taglib projects built a
reference implementation for JSTL,
which is now readily available and is
included with many Jakarta project dis-
tributions. But JSTL is not the end of
the story. Currently, there’s another
project, called JavaServer Faces (JSF),
that is seeking to standardize the pres-
entation of page formatting elements in
a fashion similar to the existing struts-
html taglib.

Let’s focus on how the evolution of
JSP custom tags has ameliorated the
Web application development process
by improving the structure of JSP pages
to make them less code-centric and
more MVC-compliant. JSTL is not a
panacea, and JSF should not be expect-
ed to be one either, but looking at this
evolution will help us understand
where we are likely to go next.

Examples: Curing the Common Code
Let’s begin with a fragment from a

classic Model 1 JSP page. While it’s
deemed a good idea to eliminate Java
code embedded within JSPs, this is eas-
ier said than done. Accessing JavaBean
properties and including them in the
page response, for example, can easily
be accomplished within a scriptlet
using JavaBean accessor methods and
variable substitution.

<%

MyBeanClass myBean = (MyBeanClass)

session.getAttribute("myBean") ;

String type = myBean.getType() ;

String imageUrl = myBean.getImageUrl() ;

%>

The value of the type property of myBean

is <%= type %>.

<P><IMG SRC="<%= imageUrl %>">

TAGS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

To use JSTL and the versions of Struts Taglibs
that support the JSTL Expression Language:
1. Get the latest Struts distribution from the

Jakarta project Web site
(http://jakarta.apache.org/struts).

2. Copy all of the *.jar files out of the /lib direc-
tory into the WEB-INF/lib directory used in
building/deploying your application.

3. Copy all the *.jar files out of the
contrib/struts-el/lib directory into the WEB-
INF/lib directory used in building/deploying
your application. This will overwrite some of
the JAR files you just placed there, replacing
them with the EL-compatible versions.

4. Copy all of the *.tld files out of the
contrib/struts-el/lib directory into the WEB-
INF directory used in building/deploying your
application. This will include TLD files for the
Struts Taglibs, the versions of the Struts
Taglibs that support the JSTL expression lan-
guage, and the JSTL taglibs themselves.

5. When building your application’s web.xml
file, provide Taglib definitions for the JSTL
Taglibs and the versions of the Struts Taglibs
that support JSTL EL, as shown in Listing 5.

6. Reference the appropriate TLDs in your taglib
directives within your JSPs (see Listing 6).

Installing JSTL and Struts Taglibs with EL Support

Power-packed with unparalleled refactoring
support, super intelligent code editing
and completion assistance, a wide range
of J2EE development features for rapid
Web application and other enterprise
development, a powerful Code Inspection
tool, tight integration with Ant and JUnit,
and a mountain of other productivity
features for Java developers.

IntelliJ IDEA is simply the best Java
development environment available.

IntelliJ IDEA, the integrated development
environment for Java that will boost
your productivity!

There are only 24 hours in a day. Use them
wisely.

Download IDEA 3.0 and experience the
only award-winning Java IDE that provides
the ease-of-use, control and flexibility you
demand, at a price you can afford.

Think you’re using the best tool?

Thinkagain.

Develop with pleasure!

www.intellij.com
See

 us
 at

 Ja
vaO

ne

Bo
oth

16
23

16 June 2003 www.JavaDevelopersJournal.com

In the fragment above, a scriptlet
accesses a session attribute (a JavaBean
stored in the session with the name
“myBean”) and establishes it within the
page context. It then assigns the values
of some of the bean’s properties to
other variables. Using the <%= ... %>
expression syntax, the values of these
properties are included in the page.

Obviously this will not render rea-
sonably when previewed in a Web
browser. Not only are “type” and
“imageUrl” variables whose values can-
not be determined except in the context
of a running application, but also their
presence within the page is bounded by
greater-than and less-than signs, just
like HTML tags. Web browsers will see
these and assume they have simply
come across a new tag they haven’t
been designed to handle. (The
<NOSCRIPT> and <NOEMBED> tags
make use of this feature to provide a
degree of backward compatibility for
older browsers.) Most browsers simply
ignore such “tags” and pretend they
aren’t there, thus an attempt to display
this page in a browser will result in gib-
berish. Furthermore, the expression
intended to display the image URL tag
(“<%= imageUrl %>”) is embedded
inside an HTML tag, which is a
violation of XML formatting constraints.

Step 1: JSP Standard Actions
Sun created a set of JSP “standard

actions,” which are tags that allow JSP
pages to cooperate with JavaBeans,

perform page redirection, and include
external resources. In contrast to the
original set of JSP directives (which
used an ASP-like syntax beginning with
“<%”), these new tags adhere to an
XML-compliant format. They use the
“jsp” namespace to specify tags to
define and access a JavaBean (e.g.,
<jsp:usebean name="bean1"
scope="session" ... />), and access bean
properties (e.g., <jsp:getProperty
name="bean1" property="prop1" />).

<jsp:useBean name="myBean" scope="session"

class="mypackage.MyBean" />

The value of the type property of myBean

is <jsp:getProperty name="myBean"

property="type" />.

<P><IMG SRC="<jsp:getProperty name="myBean"

property="imageUrl" />">

This second example uses the XML
directive syntax for standard JSP
actions, including the <jsp:useBean>
and <jsp:getProperty> tags. The
jsp:usebean tag does what the first
statement from the first example does:
it accesses a session attribute named
“myBean” and defines it to the page.
Instead of using the awkward <%= ...
%> syntax, this page makes use of
<jsp:useBean> and <jsp:getProperty>
tags.

This page has eliminated at least
one problem: scriptlets have been
removed from the page. Note, however,
that the tag still contains a nest-
ed tag, <jsp:getProperty>, which is still
a violation of XML formatting con-
straints. While most browsers today are
tolerant of such violations in general,
applications that generate XHTML for
dynamic pages could not handle this
notation. <jsp:getProperty> is in some
ways an improvement over <%= ... %>,
but it leaves many problems unre-
solved.

Although we have gotten rid of
scriptlets for this example, it’s much
more difficult to remove them from
more sophisticated pages. Let’s imagine
that “myBean” could have as one of its
properties a Java Collection object that
the page could iterate through. It may

or may not have this property, though,
and one simple way to tell is the use of
the isMultiple() method, which returns
true if this Collection property is popu-
lated.

The page snippet in Listing 1 shows
how that would be done using
scriptlets. We have inserted the output
associated with iterating over the col-
lection between the section of the page
displaying the “type” property and the
section displaying the image.

To call this ugly is an understate-
ment. There is a six-line block of Java
code that precedes a single line of
HTML (which itself has a JSP expres-

sion embedded within it). Following
this is a scriptlet block consisting of just
the closing braces for the while loop
and if statement. There is no “pretty”
way to format “<%” and “%>”, which
are the strings that separate code from
HTML in a JSP. Some code formatting
standards exist that make the separa-
tion between code and formatting
more distinct, but they are difficult to
apply and don’t resolve the problem
entirely.

After seeing code like that in Listing
1, you have to wonder about the asser-
tion that JSPs are presentation-view
components that could theoretically be
constructed by Web designers. Looking
at the attempt to include HTML for-
matting within this block (line 12), you
might think we’d have been better off
replacing that line with more code (i.e.,
an out.println statement), and forgoing
the notion of embedding HTML entire-
ly!

Step 2: Custom Tags (Struts Taglibs)
With the advent of JSP 1.1 came the

ability to write custom tags. As men-
tioned earlier, Sun provided the capa-
bility, but not much in the way of guid-
ance and standards. Along came the
Struts Taglibs, which provided standard
ways to perform iterative and condi-
tional processing. They provided a
reusable set of tags that could be
employed in a variety of applications,
and a simpler notation for accessing
properties of referenced JavaBeans.
Since the lack of tags to perform these
functions was one of the main reasons
that scriptlets were overused, the Struts
Taglibs represented a big step toward
reducing the amount of code within
JSP pages (see Listing 2).

While this was a vast improvement
over what came before it, even greater
improvements were on the horizon.
Sun got the message that providing the
ability to write custom JSP tags was
nice, but providing standard sets of tags
to perform common functions was just
as important. With this in mind, they
wrote a specification for a Java
Standard Tag Library (known as JSTL).

Step 3: JSTL
The JSTL tags fit into four cate-

gories: core (output, variable setting
and removal, inclusion, iterative and
conditional processing), XML (all of the
above but with an XML orientation,
plus XSLT transformation and XPath
processing), SQL (creating database
queries and processing result sets), and
formatting (internationalization, local-

TAGS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

JSTL is not a panacea,
and JSF should not be

expected to be one either”
“

Download a free trial

now at oracle.com/download.

Sources:
InfoWorld, November 2002
The Middleware Company, September 2002
eWeek, September 2002
IDC, May 2002

oracle.com/experts

or call 1.800.633.1072

Copyright © 2002, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
Reprinted from eWeek, September 2, 2002, with permission. Copyright © 2002 Ziff Davis Media Inc. All rights reserved.

Application Server
Experts Agree

“Oracle: one stop app
server shop.”

“Oracle9iAS is now a formidable
application server.”

“[With Oracle9iAS,] Oracle
is delivering what enterprises
need to build a robust, scalable
ebusiness infrastructure.”

“Enterprises that are seeking a
well-appointed midtier solution
will definitely want to give
Oracle9iAS a test drive.”

18 June 2003 www.JavaDevelopersJournal.com

ization, and other custom formatting).
In addition, JSTL defines an expression
language (often called “EL”) for access-
ing components directly in a class-
agnostic, type-neutral manner, without
excessive calls to intermediate tags and
directives. For example, the notation
“${sessionScope.brillig.borogoves[3].mi
msy}” addresses the property named
“mimsy” from the third element in the
indexed property called “borogoves”
that’s found in the session attribute
named “brillig”.

<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>

<c:if test="${sessionScope.myBean.multiple}">

<c:forEach var="nb"

items="${sessionScope.myBean.collection}">

<c:out value="${nb.name}" />

</c:forEach>

</c:if>

The page fragment above offers a
small sample of the functionality avail-
able from JSTL.

The Jakarta Taglibs project has pro-
vided a number of other useful tags,
some of which have historically over-
lapped with Struts Taglib functionality,
but many of which are useful in their
own right. They took it upon them-
selves to write the reference implemen-
tation for the JSTL tag set, which is
available from the Apache project Web

site (www.apache.org/dist/jakarta
/taglibs/standard-1.0/).

In addition, the developers of Struts
also took it upon themselves to rewrite
their own taglibs to use the JSTL
expression language for parameter sub-
stitution. For backward compatibility,
the original taglibs still exist and are the
default set provided with the Struts dis-
tribution. To use the new versions of
the taglibs that support the EL, special
action must be taken when configuring
your application, as described later.
The page fragment in Listing 3 uses
both JSTL core tags and the version of
the struts-html taglib that provides EL
support (the <html:img> tag) to provide
a complete version of the original page
fragment example using only JSTL and
struts-html tags.

Step 4: JavaServer Faces
JavaServer Faces (JSF) is a relatively

new specification from Sun (JSR 127) that
hopes to provide even more innovations.
Though JSF is still an immature technolo-
gy – an early access release was provided
late in 2002 – it shows a good deal of
promise. Pioneers who make use of this
early release of JSF are virtually guaran-
teed to have their code obsoleted as the
specification mutates and matures. Still,
it’s a technology worth examining.

JSF appears at first glance to be a stan-
dardized plug-in replacement for the
struts-html tag library, which provides a
mechanism for pages containing HTML
forms to interact with Struts Action class-
es. The goals for JSF go far beyond this. In
fact, in the not too distant future, Struts
will quite likely embrace both JSF and
JSTL, converging on these standards
instead of providing its own set of Struts-
specific taglibs. JSF has more properly
been called a cross between Struts and
Swing, providing a framework for creating
and manipulating generalized user inter-
face components, including event han-
dling and state management, in the con-
text of an MVC-oriented Web application.

The capabilities provided with JSF
include:
1. An MVC approach complete with a

Struts-like controller servlet and
request life cycle

2. A standardized user interface com-
ponent model that makes JSF rough-
ly analogous to Swing for HTML
pages

3. A validation framework providing
functionality similar to Struts’
Validator API

JSF is not tied to a particular pres-
entation technology (e.g., JSP), but it
does provide a tag library of format-
ting-language-neutral user interface
components for use in JSPs. In other
words, while the tags in the struts-html
tag library were bound specifically to
HTML elements, JSF tags are agnostic
about which target formatting lan-
guage will be used to render your page.
There is a default “RenderKit” that pro-
duces HTML 4.01, but this is certainly

only the beginning. Sun intends for
vendors to provide custom RenderKits
for other target formats, allowing the
same JSF-enabled JSP page to be used
for rendering in HTML, WML, SMIL,
etc. (Note that to perform complex
state management, event handling,
and validation of UI components in
HTML pages, JSF interacts with stan-
dardized JavaScript functions included
on the page.)

Listing 4 is an example of a JSF page
derived from the latest version of the
JavaServer Faces Technology Tutorial
available from Sun
(http://java.sun.com/j2ee/javaserver-
faces/docs/JSF.pdf). The specification
for JSF is changing rapidly, and it’s
already known to be out of sync with
the reference implementation, so use
this example only as a guideline for
what JSF pages are likely to look like
when the technology matures.

Note that JSF tags are not only special-
ized in terms of the specific HTML ele-
ment they correspond to (e.g., <input
type="text">), but also in terms of what
types of validation are performed for the
tag. The <h:input_number> tag in the list-
ing corresponds to an <input type="text">
tag, but it’s also tied to JavaScript valida-
tion that ensures that the contents of the
field are numeric. JSF includes not only
form-oriented tags (<h:input_*>), but also
tags for static display (<h:output_*>) and
layout (<h:panel_*>).

While JSF technology is still in its
infancy, it merits close observation as its
specification becomes more stable. You
can expect that increased synergy
between JSF and JSTL will be a major fac-
tor in the acceptance of both technologies.

Where Do We Go from Here?
1. Sun has already announced that JSP

2.0 will provide integrated support
for the JSTL expression language
anywhere within a JSP page. What
would be nice is native support for
JSTL, where the JSTL tags are as
much a part of the core JSP syntax as
<jsp:xxx> tags already are. This
means developers and administra-
tors would not need to take extra
steps to install or configure these
taglibs, or provide taglib directives
for them within pages.

2. How about a tag that translates all EL
expressions within the body? It
seems like a real pain to write a
<c:out> tag for every EL variable
that’s being included in a presenta-
tion. You could include a whole block
of text (containing multiple EL
expressions) as the “value” parame-

TAGS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Rich Rosen works for the online
edition of the Wall Street

Journal as an application archi-
tect. He began his career at Bell
Labs, where his work with rela-

tional databases and the
Internet prepared him well for

the world of Web application
development. Rich is the co-

author (along with Leon Shklar)
of Web Application Architecture:

Principles, Protocols, and
Practices, which will be pub-

lished by John Wiley & Sons later
this year.

rlr@webappbuilders.com

Increased synergy between
JSF and JSTL will be a

major factor in the acceptance
of both technologies”

“

Co
py
ri
gh
t
'
20
0
3
Ca
no
o
En
gi
ne
er
in
g
A
G.
 A
ll
 R
ig
ht
s
R
es
er
ve
d.

Ja
v
a
an
d
al
l
Ja
v
a-
ba
se
d
tr
ad
em
ar
ks
 a
r
e r
eg
is
te
r
ed
 t
r
ad
em
ar
ks
 o
f
Su
n
Mi
cr
os
ys
te
ms
,
In
c.

Rich clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

Download your free trial today!

Benefits for:

Development & Maintenance
■ rich GUIs with simple server-side programming model

■ integrates with any J2EE software

■ great tool support: visual editor, load tester

Deployment & Operation
■ application release on server only

■ application independent presentation engine on client

■ minimal network traffic: several times less than HTM L

ULC offers rich client GUI components with a

server-side programming model. Applications

using ULC combine the benefits of browser and

desktop applications.

ULC components are lean and based entirely on

Java standards. They integrate with any

existing J2EE software.

Get this proven library and save time, money,

and reduce your risk throughout the software

lifecycle.

20 June 2003 www.JavaDevelopersJournal.com

ter of a <c:out> tag, but sometimes
that’s impractical (e.g., if the block of
text contains HTML tags).

ColdFusion’s <CFOUTPUT> tag
turns variable substitution on for just
the block of text found between its
opening and closing tags (the “body”
of the tag). A JSTL tag that does this
same thing would be very nice
indeed.

<c:output>

Here is the image for

${sessionScope.x.name}:

</c:output>

It can be found in the session attribute addressed by

${sessionScope.x}.

Yes, JSP 2.0 will provide this, but it
will be a while before most JSP con-
tainers are compliant with 2.0 speci-
fications. Furthermore, we might
want to be selective about which
parts of the page should participate
in this variable substitution, e.g., the
last line in the example above, where
we want the string “${session-
Scope.x}” to appear “as is.”

3. How about the ability to choose your
own delimiters for the expression
language? A notation like

${pageScope.object.attribute} may
seem natural to Unix veterans, but
(even though I qualify as one myself)
I prefer a symmetric notation (e.g.,
[[pageScope.object.attribute]]), and I
think many Web designers (who are
supposedly the ultimate audience for
JSTL-driven pages) are likely to
agree. A possible syntax is offered in
the following example.

<jsp:directive.taglibConfig el-delims="[[,]]" />

4. While we’re on the subject of Web
designers and JSTL, how about inte-
grated support for JSTL and the
Expression Language in Web design
tools? Dreamweaver and other popu-
lar tools already provide support for
a variety of platforms including JSP,
but a browser preview function that
understands JSTL iterative and con-
ditional tags and displays a reason-
able mockup of the final page com-
plete with “dummy” content would
be a major step in enabling designers
to gain full control over JSPs as pres-
entation components.

Conclusion
In an MVC approach to Web appli-

cation development, separation of con-
tent from presentation is critical. The

key to this separation is a clear defini-
tion of responsibilities, with program-
mers responsible for model and con-
troller components, and page designers
responsible for view components. Code
embedded in view components, as
found in monolithic Model 1 JSPs,
makes it impossible for designers to
have true autonomous responsibility
for those components. A tag-based
approach that eliminates code from
JSPs facilitates the separation of
responsibilities and enables each
group, designers and programmers, to
do their job without stepping on each
other’s toes.

We’ve only scratched the surface in
describing the capabilities of JSTL. I’ve
only demonstrated a small number of
the available core tags and barely men-
tioned the XML, SQL, and formatting
tag libraries. I have only given a brief
nod to JavaServer Faces, the up-and-
coming Sun-endorsed specification
that standardizes and augments the
functionality found in a number of the
other Struts tag libraries. JSTL, JSF, and
JSP 2.0 all represent major advance-
ments in the arena of Web application
development, but it is the synergy
between them that will see the greatest
advancements.

TAGS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Create enterprise web applications with powerful
desktop-like user interfaces.

The Asperon AppProjectorTM lets you easily create sophisticated
web applications that have the full functionality of desktop
applications and the ability to be deployed in a browser without
a client install.

Get real-time interactive updates from server.
Scroll through thousands of records in seconds.
Powerful application model provides up to10 x
reduction in development time.

www.asperon.com
Download your free trial today!

TM

Evaluate and experience JClass today - visit:

http://java.quest.com/jclass/jdj

JClass®

Rich client user interface and utility components.

Server-side web client interface and reporting

components. Whatever type of Java development

you’re doing, JClass can help.

JClass ServerViews
Add professional content to your Servlet, JSP or J2EE

applications. Generate interactive charts with JClass

ServerChart and dynamic PDF

reports with JClass ServerReport.

Now fully XML and Web Services

ready!

JClass DesktopViews
Essential components for

client-side Java applications and

applets: 2D/3D charts, tables/grids,

data-entry fields, database access

and much more.

The only Java components you need
for J2EE or Swing development

© 2003 Quest Software, Inc. Quest, Sitraka and JClass are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other
products are trademarks or registered trademarks of their respective companies.

See us at JavaOne!
Silver Sponsor, Booth #1501

22 June 2003 www.JavaDevelopersJournal.com

Listing 1

1 <jsp:useBean name="myBean" scope="session" class="mypackage.MyBean"

/>

2 The value of the type pr operty of myBean

3 i s <jsp:getProperty name="myBean" pr operty="type" />.

4 <%

5 if (myBean.isMultiple()) {

6 Collection coll = myBean.getCollection() ;

7 session.setAttribute("collection", coll) ;

8 I terator i = c ol l .i terator() ;

9 w hi le (i .hasNext()) {

10 N estedBean nb = i .next() ;

11 %>

12 <%= nb.getName() %>

13 <%

14 }

15 }

16 %>

17 <P><IMG SRC="<jsp:getPr operty name="myBean" pr oper ty="imageUrl"

/>">

Listing 2

<%@ taglib uri="/WEB-INF/str uts-logic.tld" pr efix="logic" %>

<bean:define id='myBean' scope='page' value='<% session.getAttribute("myBean")

%>' />

<logic:equal parameter="myBean.multiple" value="tr ue">

<logic:iterate id="nb" items="myBean.collection">

<bean:write name="nb" pr oper ty="name" />

</logic:iterate>

</logic:equal>

Listing 3

1 <%@ taglib uri="/WEB-INF/c.tld" pr efix="c" %>

2 <%@ taglib uri="/WEB-INF/str uts-html.tld" pr efix="html" %>

3 The value of the type pr operty of myBean

4 is <c:out value="${sessionScope.myBean.type}" />.

5 <c:if test="${sessionScope.myBean.multiple}">

6 <c:forEach var="nb" items="${sessionScope.myBean.collection}">

7 <c:out value="${nb.name}" />

8 </c:forEach>

9 < /c:i f>

10 <P><html:img sr c="${sessionScope.myBean.imageUrl}" />

Listing 4

1 <%@ taglib uri="http://java.sun.com/jsf/html/"

2 prefix="h" %>

3 <%@ taglib uri="http://java.sun.com/jsf/core /"

4 prefix="f" %>

5 <jsp:useBean id="myBean"

6 class="mypackage.MyBean"

7 scope="session" />

8 <HTML>

9 <HEAD>

10 <TITLE>Sample JSF Page</TITLE>

11 <SCRIPT SRC="..."></SCRIPT>

12 </HEAD>

13 <BODY BGCOLOR="#ff ffff">

14 <f:use_faces>

15 <h:form id="form1" for mName="simpleForm">

16
T ext Field: <h:input_text id="field1"

17 m odelReference="myBean.attrib1" />

18
Numeric: <h:input_number id="field2"

19 numberStyle="INTEGER"

20 m odelReference="myBean.attrib2" />

21
Password: <h:input_secret id="fi eld3"

22 m odelReference="myBean.attrib3" />

23
<h:command_button id="submit" label="submit"

24 commandName="submit" />

25 </h:form>

26 </f:use_faces>

27 </BODY>

28 </HTML>

Listing 5

1 < !-- s truts-bean tags (with EL support) - ->

2 <taglib>

3 <taglib-uri>/WEB-INF/str uts-bean-el.tld</taglib-uri>

4 <taglib-location>/WEB-INF/str uts-bean-el.tld</taglib-location>

5 </taglib>

6

7 < !-- s truts-html tags (with EL support) - ->

8 <taglib>

9 <taglib-uri>/WEB-INF/str uts-html-el.tld</taglib-uri>

10 <taglib-location>/WEB-INF/str uts-html-el.tld</taglib-location>

11 </taglib>

12

13 < !-- s truts-logic tags (with EL support) - ->

14 <taglib>

15 <taglib-uri>/WEB-INF/str uts-logic-el.tld</taglib-uri>

16 <taglib-location>/WEB-INF/str uts-logic-el.tld</taglib-location>

17 </taglib>

18

19 <!-- JSTL core tags with EL support - ->

20 <taglib>

21 <taglib-uri>/WEB-INF/c.tld</taglib-uri>

22 <taglib-location>/WEB-INF/c.tld</taglib-location>

23 </taglib>

24

25 <!-- JSTL for matting tags with EL support - ->

26 <taglib>

27 <taglib-uri>/WEB-INF/fmt.tld</taglib-uri>

28 <taglib-location>/WEB-INF/fmt.tld</taglib-location>

29 </taglib>

30

31 <!-- JSTL SQL tags with EL support - ->

32 <taglib>

33 <taglib-uri>/WEB-INF/sql.tld</taglib-uri>

34 <taglib-location>/WEB-INF/sql.tld</taglib-location>

35 </taglib>

36

37 <!-- JSTL XML tags with EL support - ->

38 <taglib>

39 <taglib-uri>/WEB-INF/x.tld</taglib-uri>

40 <taglib-location>/WEB-INF/x.tld</taglib-location>

41 </taglib>

Listing 6

<%@ taglib uri="/WEB-INF/str uts-html-el.tld" pr efix="html" %>

<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>

<%@ taglib uri="/WEB-INF/x.tld" prefix="x" %>

TAGS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Give your J2EE applications lightspeed performance.

To excel in today’s business environment, your J2EE applications need to scream like a bat out of hell.
With heavy traffic bottlenecks and crawling end user response times, you’re total roadkill. Proactive detec-
tion of application performance problems is crucial to rapid resolution, and to taking the detour around
a crisis up ahead.

Precise/Indepth for J2EE correlates web, J2EE and database server performance to get to the root cause
of performance degradation, from URL to SQL and beyond™.

As Precise/Indepth for J2EE anticipates performance degradation, it instantly notifies your top mechanics
for analysis and tuning deep within the middle tier of your web infrastructure and provides automatic drill-
down analysis and recommendations. This translates into streamlined J2EE web applications and light-
ning fast response times.

Turn up the speed limit for your J2EE applications. Talk to your
Precise account representative today at 1.800.310.4777, or visit
www.precise.com/jdj to download a free white paper on J2EE per-
formance management and to register for an upcoming Webinar on J2EE
application performance.

PERFORMANCE IS EVERYTHING!

©2002 Precise Software Solutions, Ltd. All Rights Reserved.©2002 Precise Software Solutions, Ltd. All Rights Reserved.

Performance is Our Business

We’ll dispell two popular
myths that have grown up
around XML serialization:
that it can only be used
for JavaBeans and that
all JavaBeans are
GUI widgets”“26 June 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

ava serialization was initially used to
support remote method invocation (RMI),
allowing argument objects to be passed
between two virtual machines.

J
XML

Java Objects
 Serialization of

Long-term persistence of JavaBeans
by Joe Winchester and Philip Milne

27June 2003www.JavaDevelopersJournal.com

RMI works best when the two VMs contain compati-
ble versions of the class being transmitted, and can reli-
ably transmit a binary representation of the object
based on its internal state. When an object is serialized,
it must also serialize the objects to which its fields refer
– resulting in what is commonly called an object graph
of connected components. Although the transient key-
word can be used to control the extent to which the
serialization process penetrates the object graph, this
level of control is seldom enough.

Many have tried to use Java’s serialization to achieve
the so-called “long-term persistence” of data – where
the serialized form of a Java data structure is written to
a file for later use. One such area is the development
tools domain, in which designs must be saved for later
use. Because the logic that saves and restores serialized
objects is based on the internal structure of the con-
stituent classes, any changes to those classes between
the time that the object was saved and when it was
retrieved may cause the deserialization process to fail
outright; for example, a field was added or removed,
existing fields were renamed or reordered, or the class’s
superclass or package was altered. Such changes are to
be expected during the development process, and any
mechanism that relies on the internal structure of all
classes being identical between versions to work has the
odds stacked against it. Over the last few years the “ver-
sioning issues” associated with Java’s serialization
mechanism have indeed proved to be insurmountable

and have led to widespread abandonment of Java’s seri-
alization as a viable long-term persistence strategy in
the development tools space.

To tackle Java serialization problems, a Java
Specification Request (JSR 57) was created, titled “Long-
Term Persistence for JavaBeans.” JSR 57 is included in
JRE 1.4 and is part of the “java.beans” package. This arti-
cle describes the mechanism with which the JSR solved
the problems of long-term persistence, and how you can
take control of the way that the XMLEncoder generates
archives to represent the data in your application.

We’ll start our section by dispelling two popular myths
that have grown up around XML serialization: that it can
only be used for JavaBeans and that all JavaBeans are GUI
widgets. In fact, the XMLEncoder can support any public
Java class; these classes don’t have to be JavaBeans and
they certainly don’t have to be GUI widgets. The only con-
straint that the encoder places on the classes it can
archive is that there must be a means to create and con-
figure each instance through public method calls. If the
class implements the getter/setter paradigm of the
JavaBeans specification, the encoder can acheive its goal
automatically – even for a class it knows nothing about.
On top of this default behavior, the XMLEncoder comes
with a small but very powerful API that allows it to be
“taught” how to save instances of any class – even if they
don’t use any of the JavaBeans design patterns. In fact,
most of the Swing classes deviate from the JavaBeans
specification in some way and yet the XMLEncoder han-

28 June 2003 www.JavaDevelopersJournal.com

dles them via a set of rules with which it comes preconfigured.
The XMLEcoder is currently spec’ed to provide automatic sup-
port for all subclasses of Component in the SDK and all of their
property types (recursively). This means that as well as being
able to serialize all of AWT and Swing GUI widgets, the
XMLEncoder can also serialize: primitive values (int, double,
etc.), strings, dates, arrays, lists, hashtables (including all
Collection classes), and many other classes that you might not
think of as having anything to do with JavaBeans. The support
for all these classes is not “hard-wired” into the XMLEncoder;
instead it is provided to the Encoder through the API that it
exposes for general use. The variety in the APIs among even the
small subset of classes mentioned earlier should give some
idea of the generality and scope of the persistence techniques
we will cover in the next sections.

Background
When problems are encountered with an object stream,

they’re hard to correct because the format is binary. An XML
document is human readable, and therefore easier for a user
to examine and manipulate when problems arise. To serialize
objects to an XML document, use the class java.beans.
XMLEncoder; to read objects, use the class
java.beans.XMLDecoder.

One reason object streams are brittle is that they rely on
the internal shape of the class remaining unchanged
between encoding and decoding. The XMLEncoder takes a
completely different approach here: instead of storing a bit-
wise representation of the field values that make up an
object’s state, the XMLEncoder stores the steps necessary to
create the object through its public API. There are two key
factors that make XML files written this way remarkably
robust when compared with their serialized counterparts.

First, many changes to a class’s internal implementation
can be made while preserving backward compatibility in its
public APIs. In public libraries, this is often a requirement of
new releases – as breaking a committed public API would break
all the third-party code that had used the library in its older
form. As a result of this, many software vendors have internal
policies that prevent its developers from knowingly “breaking”
any of the public APIs in new releases. While exceptions
inevitably arise, they are on a much, much smaller scale than
the internal changes that are made to the private implementa-

tions of the classes within the library. In this way, the
XMLDecoder derives much of its resilience to version-

ing by aligning its requirements with those of devel-
opers who program against APIs directly.

The second reason for the stability of the decoding
process as implemented by the XMLDecoder is just as impor-
tant. If you were to take an instance of any class, choose an
arbitrary member variable, and set it to null – the behavior of
that instance would be completely undefined in all subsequent
operations – and a bug-free implementation would be entitled
to fail catastrophically under these circumstances. This is
exactly what happens when a field is added to a new version of
a class and this causes people to cross their fingers when trying
to deserialize an instance of a class that was written out with an

older version. The XMLEncoder, by contrast, doesn’t store a list
of private fields but a program that represents the object’s state.
Here’s an XML file representing a window with the title “Test”:

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1" class="java.beans.XMLDecoder">

<object class="javax.swing.JFrame">

<void proper ty="title">

<string>T est</string>

</void>

<void proper ty="visible">

<boolean>tr ue<boolean/>

</void>

</object>

</java>

XML archives, written by XMLEncoder, have exactly the
same information as a Java program – they’re just written
using an XML encoding rather than a Java one. Here’s what
the above program would look like in Java:

JFrame f = new JFrame();

f.setTitle("Test");

f.setVisible(true);

When a backward compatibility issue arises in one of the
classes in the archive, it may cause one of the earlier state-
ments to fail. A new version of the class might, for example,
choose not to define the “setTitle()” method. When this hap-
pens, the XMLDecoder detects that this method is now miss-
ing from the class and doesn’t try to call it. Instead, it issues a
warning, ignores the offending statement, and continues
with the other statements in the file. The critical point is that
not calling the “setTitle()” method does not violate the con-
tract of the implementation (as deleting an instance variable
would), and the resulting instance should be a valid and fully
functional Java object. If the resulting Java object fails in any
way, an ordinary Java program could be written against its
API to demonstrate a genuine bug in its implementation.

The vendors of popular Java libraries tend to devote signifi-
cant resources toward programs to manage demonstrable
bugs of this kind and enlist the support of the development
community to work toward their eradication – Sun’s
“BugParade” is a well-known example. As a result of these
kinds of programs, bugs that can be demonstrated by simple

“setup code” tend to be rare in mature libraries. Once again,
the XMLDecoder benefits here as it’s able to ride on the coat-
tails of the Java developer by using the public APIs of the class-
es instead of relying on special privileges to circumvent them.

Encoding of JavaBeans
To illustrate the XMLEncoder, this article shows serializa-

tion based on a number of scenarios using an example
Person class. These range from simple JavaBeans encoding
through nondefault construction and custom initialization.

In the simplest scenario, the class Person has String fields
for firstName and lastName, together with get and set methods.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

“XML archives, written by XMLEncoder, have exactly the
same information as a Java program – they’re just written

using an XML encoding rather than a Java one”

30 June 2003 www.JavaDevelopersJournal.com

public class Person {

private String firstName;

private String lastName;

public String getFirstName() { r eturn firstName; }

public String getLastName() { return lastName; }

public void setFirstName(String str) { firstName = str; }

public void setLastName(String str) { lastName = str; }

}

The following code creates an encoder and serializes a
Person.

FileOutputStr eam os = new FileOutputStr eam("C:/cust.xml");

XMLEncoder encoder = new XMLEncoder(os);

Person p = new Person();

p.setFirstName("John");

encoder .writeObject(p);

encoder. close();

The XML file created shows that Person class has been
encoded, and that its firstName property is the string “John”.

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1" class="java.beans.XMLDecoder">

<object class="Person">

<void property="firstName">

<string>John</string>

</void>

</object>

</java>

When the file is decoded with the XMLDecoder, the
Person class will be instantiated with its default constructor,
and the firstName property set by calling the method
setFirstName("John").

FileInputStr eam os = new FileInputStr eam("C:/cust.xml");

XMLDecoder decoder = new XMLDecoder(os);

Person p = (Person)decoder. readObject();

decoder. close();

To understand how to leverage the
encoder and decoder for custom serialization requires

an understanding of the JavaBeans component model. This
describes a class’s interface in terms of a set of properties,
each of which can have a get and set method. To determine
the set of operations required to re-create an object, the
XMLEncoder creates a prototype instance using its default
constructor and then compares the value of each property
between this and the object being serialized. If any of the
values don’t match, the encoder adds it to the graph of
objects to be serialized, and so on until it has a complete set
of the objects and properties required to re-create the origi-
nal object being serialized. When the encoder reaches
objects that can’t be broken down any further, such as Java’s
strings, ints, or doubles, it writes these values directly to the
XML document as tag values. For a complete list of these
primitive values and their associated tags, see

http://java.sun.com/products/jfc/tsc/articles/persist-
ence3/index.html.

To serialize an object, XMLEncoder uses the Strategy
pattern, and delegates the logic to an instance of
java.beans.PersistenceDelegate. The persistence delegate is
given the object being serialized and is responsible for
determining which API methods can be used to re-create
the same instance in the VM in which it will be decoded.
The XMLEncoder then executes the API to create the pro-
totype instance that it gives to the delegate, together with
the original object being serialized, so the delegate can
determine the API methods to re-create the nondefault
state.

The method XMLEncoder.setPersistenceDelegate
(Class objectClass, PersistenceDelegate delegate) is used
to set a customized delegate for an object class. To illus-
trate this we’ll change the original Person class so that it
no longer conforms to the standard JavaBeans model,
and show how persistence delegates can be used to
teach the XMLEncoder to successfully serialize each
instance.

Constructor Arguments
One of the patterns that can be taught to the

XMLEncoder is how to create an instance where there is no
zero-argument constructor. The following is an example of
this in which a Person must be constructed with its
firstName and lastName as arguments.

public Person(String aFirstName, String aLastName){

firstName = aFirstName;

firstName = aLastName;

}

In the absence of any customized delegate, the
XMLEncoder uses the class java.beans.DefaultPersistence-
Delegate. This expects the instance to conform to the
JavaBeans component model with a zero-argument con-
structor and JavaBeans properties controlling its state. For
the Person whose property values are supplied as construc-

tor arguments, an instance of DefaultPersistenceDelegate
can be created with the list of property names that represent
the constructor arguments.

XMLEncoder e = new XMLEncoder(os);

Person p = new Person("John","Smith");

e.setPersistenceDelegate(Person.class,

new DefaultPersistenceDelegate(

new String[] { "firstName","lastName"}

);

e.writeObject(person);

When the XMLEncoder creates the XML for the Person
object, it uses the supplied instance of the
DefaultPersistenceDelegate, queries the values of the
firstName and lastProperties, and creates the following XML
document.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

“Although custom encoding rules can
be supplied to the XMLEncoder, this is

not true of the XMLDecoder”

32 June 2003 www.JavaDevelopersJournal.com

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1" class="java.beans.XMLDecoder">

<object class="Person">

<string>John</string>

<string>Smith</string>

</object>

</java>

The result is a record of the Object’s state but written in
such a way that the XMLDecoder can locate and call the
public constructor of the Person object just as a Java pro-
gram would. In the previous XML document where the
Person was a standard JavaBeans component, the nondefault
properties were specified with named <void
property=“propertyName”> tags that contained the argu-
ment values.

Although custom encoding rules can be supplied to the
XMLEncoder, this is not true of the XMLDecoder. The XML
document represents the API steps to re-create the serialized
objects in a target VM. One advantage of not having custom
decoder rules is that only the environment that serializes the
objects requires customization, whereas the target environ-
ment just requires the classes with unchanged APIs. This
makes it ideal for the following scenario – serialization of an
object graph within a development tool that has access to
design-time customization, where the XML document will be
read in a runtime environment that does not have access to
the persistence delegates used during encoding.

Custom Instantiation
In addition to a class being constructed with property val-

ues as arguments, custom instantiation can include use of
factory methods. An example of this would be if Person’s
constructor were package protected and instances of the
Person class could only be created by calling a static
createPerson() method defined in a PersonFactory class.

To write a persistence delegate requires a basic under-
standing of how the encoder creates its set of operations that
will re-create the serialized objects when the stream is deseri-
alized. The XMLEncoder uses the command pattern to record
each of the required method calls as instances of the class
java.beans.Statement. Each Statement represents an API call
in which a method is sent to a target, together with any argu-
ments. Commands that are responsible for the instantiation
of objects are instances of java.beans.Expression. A subclass
of Statement returns a value. Each object in the graph is rep-
resented by the Expression that creates it and a set of
Statements that are used to initialize it.

For general control of instantiation, a subclass of the
PersistenceDelegate class should be created with a special-
ized instantiate() method. The return value is the
java.beans.Expression that indicates to the encoder which
method or constructor should be used to create (or retrieve)
the object. The returned Expression includes the object, the
target (normally the class that defines the constructor), the
method name (normally the fake name “new,” which indi-
cates a constructor call), and the argument values that the
method or constructor takes.

The first argument of the instantiate() method is the
instance of the Person object being serialized, and the sec-
ond object is the encoder (see Listing 1).

When the XMLEncoder serializes the Person instance,
instead of the DefaultPersistenceDelegate that uses standard
JavaBeans rules for properties, it uses the anonymous inner
class we registered as the persistence delegate of the
Person.class. The resulting XML follows. In the <object> tag as

well as the class name, the static method createPerson has also
been included, and the arguments are specified as child tags.

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1" class="java.beans.XMLDecoder">

<object class="PersonFactory" method="cr eatePerson">

<string>Smith</string>

<void property="firstName">

<string>John</string>

</void>

</object>

</java>

The inner class created for the Person persistence delegate
subclasses from DefaultPersistenceDelegate, so the firstName
property value of “John” is included in the XML document;
however, no property tag is included for lastName. This is
because the XMLEncoder compares the prototype instance of
Person against the instance being serialized to determine
which property values are not their default and need to be
included in the XML document. The method that does this is
protected void initialize(Class type, Object oldInstance,
Object newInstance, Encoder out). The oldInstance argument
is the object being serialized and the newInstance is the pro-
totype. Because the prototype instance is created using the
Expression returned by the persistence delegate’s method
protected Expression instantiate(Object oldInstance, Encoder
encoder), the newInstance argument will already have the
lastName set to be the same as the oldInstance so the
encoder won’t see their values as different and hence it does
not serialize a property value for the lastName.

Custom State
The DefaultPersistenceDelegate assumes that the state of

the oldInstance can be determined and restored by using the
JavaBeans component model for properties. The list of proper-
ties for a class is retrieved using the method java.beans.
Introspector.getBeanInfo(ClassaClass).getPropertyDescriptors(
). Each property is an instance of java.beans.Property
Descriptor and includes a get and set method. The
Introspector uses a set of rules matching method name pairs
to create properties, although these rules can be overridden by
supplying a specific BeanInfo class. The BeanInfo class can use
a different set of methods than those that the introspector
would otherwise have determined as the property’s get and set
method. However, it can’t deal with scenarios in which there is
no get and set method, for example. For these the persistence
delegate needs to be customized, and as an example we will
have a property called nicknames that is multivalued.

private List nicknames = new Arr ayList();

public void addNickname(String name){nicknames.add(name); }

public List getNicknames(){r eturn nicknames; }

Nicknames are added to the class one at a time using the
addNickname() method, and the complete list is retrieved
using getNicknames(). The decoder needs to iterate through
the nicknames and create an archive that uses the addNick-
name() method to re-create the Person.

The persistence delegate will subclass DefaultPersistence-
Delegate that assumes construction of the class through a
default Person, and will override the instantiate() method
that’s responsible for determining the expressions required to
re-create the oldInstance (see Listing 2).

The persistence delegate iterates through the nicknames
and for each one adds a statement to the encoder that speci-

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Philip Milne was the lead
architect and expert group lead

for JSR 57, and worked at Sun as
part of the Swing development

team. He now works as a
consultant in London.

Joe Winchester is a developer for
IBM in Hursley UK, where he

works on GUI software tooling
for WebSphere. Joe was part of

the expert group for JSR 57.

34 June 2003 www.JavaDevelopersJournal.com

fies the API to re-create the nickname. For this the Statement
includes the target of the method (the Person oldInstance),
the method name (addNickname), and the arguments (the
nickname) (see Listing 3).

Specifying Delegates in BeanInfo Classes
In the examples used so far the custom persistence delegate

was set directly onto the XMLEncoder by calling the method
setPersistenceDelegate(Class,PersistenceDelegate). This works if
you’re the author of the code that’s responsible for performing
the serialization, but in some scenarios another piece of software
such as an IDE tool is responsible for encoding the JavaBeans. In
this situation you must teach the tool about the delegate that it
should use for your class; this is done by specifying the delegate
class name in the BeanDescriptor for a string key of
“persistenceDelegate”. For example, if the Person class is going to
be introduced into an IDE together with PersonBeanInfo, the
getBeanDescriptor() method would be specialized.

public class PersonBeanInfo extends SimpleBeanInfo {

public BeanDescriptor getBeanDescriptor(){

BeanDescriptor r esult = new BeanDescriptor(Person.class);

result.setV alue("persistenceDelegate", PersonPersistenceDelegate.class);

return result;

}

}

If the PersonBeanInfo is not in the same package as the
Person class, the search path of the Introspector in the tool
will need to be updated to include the BeanInfo’s package.

Another way in which BeanInfo classes can be used to
leverage persistence is by marking properties as transient.
When DefaultPersistenceDelegate is responsible for encod-
ing the JavaBean, it looks at all the available read/write prop-

erties and compares the existing values on the object being
serialized against the values on the prototype instance. To
flag a property so that it will be ignored, the key “transient”
should be set to the value Boolean.TRUE. For example, if the
“firstName” property should be considered transient, the
getPropertyDescriptors() method on PersonBeanInfo could
be specialized as shown in Listing 4.

Conclusion
This article explained how the design of the XMLEncoder

avoids many of the fundamental pitfalls of binary serialization
and makes the case that XML archives produced by the
XMLEncoder can be trusted as a reliable means to store valu-
able data over the long term. Central to the design of the
XMLEncoder is the java.beans.DefaultPersistenceDelegate class,
which provides a default serialization strategy based on the idea
of properties as laid out in a JavaBeans component model.

We show how custom delegates can be submitted to the
encoder to teach it about idioms other than those of the
JavaBeans component model, so classes that don’t follow the
JavaBeans conventions can be accommodated without chang-
ing their APIs. Because, in all cases, the decoder inflates object
graphs using public API calls; deserialization is remarkably
robust in the face of changes made to the classes referred to in
the archives. If you need to save some critical data in your appli-
cation to a file and are not interested in designing a new file for-
mat and coding the readers and writers for it – check out the
XMLEncoder/XMLDecoder to see if they’ll do it all for you.

References
• Using XML Encoder on the Swing Connection:

http://java.sun.com/products/jfc/tsc/articles/persist-
ence4/index.html

• JavaBeans: http://java.sun.com/products/javabeans/

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Listing 1

XMLEncoder e = new XMLEncoder(os);

Person p = PersonFactory. createPerson("Smith");

Cust.setFirstName("John");

e.setPersistenceDelegate(Person.class, new DefaultPersistenceDelegate(){

protected Expr ession instantiate(Object oldInstance, Encoder out){

String lastName = ((Person)oldInstance).getLastName();

return new Expr ession(

oldInstance,

PersonFactory. class,

"createPerson",

new Object[] {lastName});

}

}

);

e.writeObject(p);

Listing 2

XMLEncoder e = new XMLEncoder(os);

Person p = new Person();

p.addNickname("Jonny");

p.addNickname("Jonboy");

e.setPersistenceDelegate(Person.class,new DefaultPersistenceDelegate(){

protected void initialize(Class type,Object oldInstance, Object

newInstance,Encoder out) {

Person cst = (Person)oldInstance;

Iterator iter = cst.getNicknames().iterator();

while(iter .hasNext()){

out.writeStatement(new Statement(

oldInstance,

"addNickname",

new Object[] { iter. next() }));

}

}

});

e.writeObject(p);

Listing 3

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1" class="java.beans.XMLDecoder">

<object class="Person">

<void method="addNickname">

<string>Jonny</string>

</void>

<void method="addNickname">

<string>Jonboy</string>

</void>

</object>

</java>

Listing 4

public Pr oper tyDescriptor[] getPr oper tyDescriptors() {

Proper tyDescriptor[] r esult =

new Pr oper tyDescriptor[] {

new Pr oper tyDescriptor("firstName",Person.class),

new Pr oper tyDescriptor("lastName",Person.class)

};

result[0].setV alue("transient",Boolean.TRUE);

return result;

}

Rational XDE Professional Java Edition is:

UML modeling for Java

model code synchronization

automated design documentation

customizable design patterns

data modeling

and runs inside WebSphere Studio
In other words,
your IDE on steroids.

Lemme guess. You’re thinking this is just one more tool that’s actually going to get in your way. Hardly.

Rational® XDE™ Professional blends right into your development experience. How? It runs inside IBM®

WebSphere® Studio Application Developer, or stands alone with its own Eclipse-based Java™ Integrated

Development Environment. It supports J2EE and J2SE. And Rational XDE support also includes membership

to the Rational Developer Network,SM a helpful online community that provides reusable assets, Web-based

training and discussion forums. We figure if someone else has already solved a problem, why should you

have to do it again? To create a better development experience without creating new problems for yourself,

get Rational XDE starting at only $1,595. Or go to www.rational.com/offer/javacd2 to get a free Rational XDE

Professional Evaluation CD so you can see it and try it out for yourself.

IB
M

 and W
ebSphere are tradem

arks of International B
usiness M

achines C
orporation in the U

nited States, other countries, or both. R
ational, R

ational D
eveloper N

etw
ork and XD

E are service m
arks, tradem

arks
or registered tradem

arks of R
ational Softw

are C
orporation in the U

nited States, other countries or both. Java and all Java-based tradem
arks are tradem

arks of Sun M
icrosystem

s, Inc.in the U
nited States, other countries, or both.

©
 C

opyright R
ational Softw

are C
orporation, 2003. A

ll rights reserved.M
ade in the U

.S.A
.

36 June 2003 www.JavaDevelopersJournal.com

uring the past 18 months, a rapidly
growing number of organizations have
been taking advantage of the emerging
JCache standard for distributed caching
to help scale application performance
while at the same time reducing infra-
structure costs.

This article looks at some of the
strengths and weaknesses of various
caching architectures, examines how
they fit into the surrounding J2EE and
other ecosystems, and pinpoints each
one’s “sweet spot.” It will look at both
“flat” and multi-tier frameworks, and
contrast standards-based frameworks
with proprietary offerings.

JCache: A Pluggable Java Temporary
Caching Framework

The JCache specification (see side-
bar) standardizes in-process caching of
Java objects, and removes from the
application programmer the burden of
implementing standard cache features

such as data validation, locking, evic-
tion, and management (see Figure 1).
As well as providing the basic put and
get methods (a Cache extends a stan-
dard Map), the API offers a pluggable
CacheLoader interface so users can add
custom loaders for whatever data
sources they are using.

An increasing number of products
are supporting the JCache API; of
course, simply supporting JCache is
only a part of the solution. Depending
on the problem you and your applica-
tion developers are trying to solve, you
should carefully consider which cache
architecture best fits your requirements
and constraints.

What Are the Trade-Offs Involved
in Caching?

Caching is always based on com-
promise; a trade-off between perfor-
mance, scalability, and accuracy using
the various resources available. Ease of
configuration is an important second-
ary consideration. Let’s consider how
we balance these factors to achieve the
best performance possible.

Accuracy – How Stale Is Your Data?
When reading data from a cache for

the second and subsequent times, how
do you know whether the data is
“stale”? Has the underlying data been
changed? A cache can make one of the
following assumptions:
• The data is valid “forever” (until the

data item is ejected to make space
for another, or the cache is closed
down). This is easy to understand
and implement but obviously only
works for “static” data – today’s
weather forecast may be static, but a
current stock price certainly isn’t.

• The data is valid for a fixed period of
time (or fixed number of accesses, or
some other simple algorithm that the
cache can apply), after which it is
invalidated. This makes an excellent
choice for data whose normal
change cycle is longer than the “time
to live” chosen, and where the
inevitable (but occasional) use of

out-of-date data is not critical.

Neither of these approaches is per-
fect – either can leave a wide-open win-
dow of vulnerability during which stale
data could be used by the application.
We’ll see later how active, pushed-
based caches can reduce or remove
that window.

Scalability – Will the Cache Itself
Become a Bottleneck?

Although a cache is intended to
improve performance, simplistic tech-
niques can sometimes have a counter-
intuitive effect. If you try to cache too
much data, or if data is aged out too
frequently, then the cache can add
more overhead than it saves. Does your
cache expand to such an extent that it
is using up all your physical memory? If
so, you may be spending far more time
and effort paging (thrashing!) your vir-
tual memory than you saved on data
access.

Moreover, cache techniques that
work well in single-user cases can
break down when tens, hundreds, or
thousands of users are involved.
Multiple sessions serializing on syn-
chronized accesses to the cache can be
a significant drag on performance.

A single cache cannot grow indefi-
nitely – sooner or later the workload
somehow has to be spread across the
network; thus the distributed cache is
born. For read-only caches this is no
big issue; each cache can operate inde-
pendently, serving its own portion of
users. Caches that need to support data
updates meet additional problems of
distributed locking and synchroniza-
tion.

How Do Different Cache Architectures
Measure Up?
Page Caches/Proxy Caches

Web server caches can appear with-
in Web servers, or as stand-alone appli-
ances in front of Web servers. Typically
a Web server cache has a very simple
model: supporting time-based invali-
dation, simple configuration policies

Using JCache
to Save Money
What’s the best solution for you? Nigel Thomas

DJ2
SE

H
O

M
E

J2
E

E
J2

M
E

CACHING

JCache has been in development under the
Java Community Process as JSR 107 (see
http://jcp.org/jsr/detail/107.jsp) since it was first
proposed by Oracle in early 2001. At the time of
writing, the JCache expert group has not yet
released a community draft, making it one of the
slower JSRs in the pack.

There’s always some risk in adopting a stan-
dard before it’s ratified, but developers need not
worry too much about the danger of being inex-
tricably locked into a prerelease JCache API. First,
the proposed API has been stable for quite a
while now – although it has not been published
outside of the expert group. Second, most devel-
opers will see only the client side of the API,
which is not much different from working with
regular Map objects – it’s very easy to use, and
it’s also very easy to upgrade existing “roll your
own” caches based on hashmaps.

At least one major user organization is repre-
sented on the JCache expert group alongside ven-
dors such as Oracle, Gemstone, SpiritSoft, and
Tangosol – and you can be sure that they would-
n’t commit so much to the standard if they didn’t
think it was going to be worth it in the long run.

More About JCache

38 June 2003 www.JavaDevelopersJournal.com

(based on file types, filename pattern
matching, etc.), and perhaps offering
some degree of operator control such
as the ability to flush the cache (as a
whole, or by region).

The main task of a Web server is to
serve pages; the cache helps that along
without requiring any complex pro-
gramming. These caches work best
when many users are accessing the
same pages; all users get the benefit of
the same cached pages.

Page fragment caches add a further
refinement by allowing different rules

to be applied to different parts of the
Web page. Static content is cached for-
ever, volatile content has a time-to-live,
and transactional content is served
directly. Caching policy is associated
with different page components using
JSP tags, for example. These caches
have to be more careful about data
sharing, and typically they will have
separate policies for application, ses-
sion, and “global” data.

Database Caches
Most databases incorporate a data

cache of some sort; some include sev-
eral. Oracle, for example, includes the
“shared global area” that contains a
cache of recently used database blocks
as well as caches of compiled stored
procedure code, parsed SQL state-
ments, data dictionary information,
and more. A correctly sized cache is a
crucial component of a well-tuned
database. However, you should realize
that the process of extracting data from
the cache is still very resource hungry:
1. The client application issues an SQL

statement.
2. The statement is sent across the net-

work.
3. The statement is compared to

cached statements; if found in the
cache there’s no need to reparse it.

4. The parsed statement – with its gen-
erated access plan – is executed; the
dictionary, index, and data blocks in
the cache are searched.
• Disk reads into the cache are made

if necessary.
5. Row and column data is extracted

from the disk blocks.
6. This data is finally sent back across

the network to the client application.

Of these, only Steps 3 and 4 are
affected by the cache. The other steps
may well take several milliseconds and
many thousands of CPU cycles. So
there’s still plenty of room for caching
software outside the database, cutting
out unnecessary calls to the data server.

Some products let you hide a fur-
ther cache in the transport layers above
the database; for example, there are a
number of JDBC drivers that can cache
the result sets from frequently executed
SQL statements. These caches can cut
out repeated reads, and are an easy
retrofit to existing applications.
However, they often don’t deal well (or
at all) with the problems caused when
data is being updated as well as read.

Transactional Caches
This is where a transactional cache

comes in – dealing with volatile data
that’s being created, updated, and
deleted as well as read. Often the cache
is linked to a particular programming
model, either proprietary – often based
on an object database – or based on
standards such as J2EE’s Container
Managed Persistence (CMP), or the
Java Data Objects (JDO) specification.
The programming model provides the
“ground rules” for the cache, identify-
ing sessions, the start and end of trans-
actions, and the locking policies to be
used. Updates go through the cache to

CACHING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Kovsky Conference Productions Inc. is independent of Sun Microsystems, Inc.

Quite simply, the Colorado Software Summit is the year's premier inter-
national JAVA & XML programming event. It's chock-full of real-world
content for the serious Java and XML programmer — information you
can actually use to move your career forward.

— Renown speakers & and a faculty of movers, shakers and prob-
lem-solvers

— A flexible, dream agenda of timely, bankable, make-you-a-better-
programmer-today topics

— And the priceless chance to swap war stories with colleagues
who “get it.”

To register or for more information call 800-481-3389 or 719-481-3389
for International calls.

40 June 2003 www.JavaDevelopersJournal.com

ensure that all parties (client sessions,
the cache, and the underlying data
store) are kept in sync.

Transactional caches can be pes-
simistic (lock early, which can result in
serialization with sessions queuing for
locks) or optimistic (lock as late as pos-
sible, which improves concurrency but
is more likely to allow update conflicts
to develop). Unless data is carefully
partitioned, distributed locking adds
latency; this increases the serialization
effect. Anyone used to distributed data-
bases will recognize the symptoms: a
system reduced to a crawl while
processors are still underutilized and
sessions are simply queuing up on data
locks.

Transactional caches tend to be
tightly coupled to a particular applica-
tion platform or coding style; some
products require use of specific devel-
opment and runtime tools, and it can
be fearfully difficult to retrofit transac-
tional caches onto existing applica-
tions.

Active, Push-Based Caching
Active caches turn the data concur-

rency problem around. Rather than
having the cache try to predict whether
cached data is still valid (the time-
based approach) or check against the
database (using transactional “select
for update” locking), data updates can

be “pushed” out directly to the client
caches, as well as “pulled” into the
cache as a result of client application
requests for data (see Figure 2).

The performance advantages are
clear. Just one message is needed to
notify a cache about new data values.
Application threads register a listener
with the cache, and the cache listens
for the message. Client sessions are
never at risk from stale, out-of-date
data – whether the data changes once a
day or every few seconds. Database
access is reduced. Data is read once
when cached; the “notification agent” –
maybe a database trigger – fires only
when the data is updated at the source.
As long as updates are less frequent
than queries, the push-based cache is
extremely effective in reducing network
traffic, and all data accesses except the
first respond quickly, without network
and datastore latency.

Heterogeneous Data Sources
Often there are several different

types of data source; a homogeneous
transaction model based on just one
data type is inappropriate. Real-world
applications deal with many different
styles of data – relational, structured,
object oriented – using many different
access techniques – SQL, ISAM, LDAP,
etc. It’s unusual for typical transaction-
al caches to support more than one of
these models cleanly.

An active cache based on JCache
can sidestep the problem by providing
a single API to cached data, across any
data type, combined with the simple
update notification interface. Data
updates can be fed into the cache from
the data server, or from its client appli-
cations.

Distributed Caches
When necessary, caches can easily

be distributed across a server farm. The
distributed caches can be:
• Independent: Each cache operates

without reference to the others. The
same data item may be cached in
many places.

• Partitioned: Data is divided some-
how between caches; clients (or the
cache API) “know” which cache to
address for each piece of data, which
is held only once.

• Coordinated: The same data may
appear in several caches, effectively
side by side in a “flat” structure;
cache misses may be served either
from “peer” caches or from the
underlying datastore. The cache soft-
ware hides this complexity, and man-

ages the necessary exchange and
locking of data.

Multi-Tier Caching – The Flexible Solution
It is also quite easy to develop

“multi-tier” caches. At the bottom layer
there’s a regular cache over the under-
lying datastore. Cache misses at this
level convert to datastore lookups. To
improve performance, further cache
layers are added (see Figure 3); a cache
miss at these higher layers converts to a
cache lookup in the next layer down.

How does this help? Well, the top
layer can be right up close to the appli-
cation client – in the same virtual
machine. This relatively small “VM
cache” can be supported by a larger free-
standing “local cache,” which soaks up
most top-tier cache misses without
needing any network traffic. The middle-
tier local cache passes its own cache
misses down to the bottom, much larger,
datastore cache. With the added degrees
of flexibility offered by two or three
cache tiers, it’s quite easy to tune the
caching framework to optimal perform-
ance for a specific application within the
constraints of memory, processor, and
network resources available.

Caching and JMS
Some distributed cache products

use proprietary message formats, but
increasingly JMS (Java Message Service)
is recognized as being the best choice.
Cache load requests are passed down
the hierarchy using JMS queues, which
can easily load balance requests; the
data can be returned on a queue (for a
specific cache) or on a topic (making it
simple to organize cache clusters).

Update notifications can also be
broadcast on a JMS topic; the notifica-
tion agent is simply a JMS publisher
client. Any kind of data source or data
feed can easily be fitted into this
model, and JMS guarantees to maintain
the order of updates so that everything
is kept consistent.

The alternatives to JMS are not
attractive. Some use multicast, which
is superficially attractive for broadcast
– a single physical message reaches all
intended subscribers – but does not
offer guaranteed delivery, message
ordering, or content-based addressing.
Attempts to bolt these features on typi-
cally add more overhead than the mul-
ticast saves. Worse, deploying multicast
across a WAN or the Internet is fraught
with technical and administrative
problems; many routers do not sup-
port (or do not allow) multicast traffic
flow.

CACHING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 1 Cache and its pluggable strategies

Figure 2 One tier – active cache update flow

42 June 2003 www.JavaDevelopersJournal.com

Conclusion
The bottom line is that application

performance depends on efficient data
distribution. Since almost all server inter-
actions involve data access, it’s crucial to

ensure fast data access for maximum
application performance. It pays to build
a cache and avoid unnecessary round-
trips to the datastore. By reducing traffic
between the different layers of an applica-
tion, you can substantially diminish the
size and cost of the installation and great-
ly enhance the system’s responsiveness.

Applications depending on JCache
gain simplicity and flexibility in terms
of configuration and performance
management. By using a standard API,
developers avoid the danger of being

locked into proprietary caching mecha-
nisms. JCache can sit over any type of
datastore – whether “static” (relational,
object, or legacy databases, for exam-
ple) or “dynamic” (for instance, a finan-
cial market data feed, process control
telemetry readings, or network man-
agement events).

Adding JMS and an active push-
based caching model into the equation
lets the architect set the quality of ser-
vice required, scale up to the load
demanded, and fine-tune his or her
intercache traffic. JMS traffic-shaping
techniques – carefully honed to support
enterprise messaging architectures –
can be applied to optimize and balance
network load in a multi-tier caching
framework. Using JMS and JCache
active push-based caching, developers
can choose to cache anywhere in the
application or network. In other words,
caching can be done close to the data
source or close to the delivery destina-
tion. Business requirements can then be
more closely aligned with the enterprise
architecture to ensure that caching is
done at the optimal level.

References
• Ross-Talbot, S., and Brown, G. “Scalable

Web Services Using JMS & JCache.”
Web Services Journal, Vol. 2, issue 3:
www.spiritsoft.com/media/wsj/jms_j
cache.pdf, www.sys-con.com/web-
services/article.cfm?id=182

• eBizQ – “Standards-Based Caching
Solutions for the Enterprise”:
www.messageq.com/jms/spirit-
soft_1.html

Nigel Thomas is
director of product

management at
SpiritSoft.

nigel.thomas
@spiritsoft.com

CACHING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 3 Three tier– the whole picture

44 June 2003 www.JavaDevelopersJournal.com

hile I was preparing for my interview
with Bruce Eckel, a quote appeared in
his Web log in May that said “If it’s not
tested, it’s broken.” It got me thinking
about how much I actually tested the
code that I wrote. Now I don’t write
JUnit tests for everything, but perhaps
I should. To that end, here’s my pro-
posal (I’m looking forward to the royal-
ty check):
1. Sun should embrace the JUnit

framework and include it in the Java
Development Kit.

2. Any untested methods should throw
an UntestedMethodException.

If that doesn’t tell you how much
that download has been tested, I don’t
know what will. Now I appreciate that
there will be developer overheads in
creating test cases, but perhaps it may
make the job title “Test Engineer” pop-
ular again. This will decrease the num-
ber of unemployed IT staff; everyone’s
happy – apart from developers.

It’s time to face facts, ladies and
gentlemen; we got away with it for far
too long. Now it’s time to change. Let
me first reassure you that “change” is
not a dirty word; in fact it’s one of the
best things that can happen to you.
Thinking differently forces you to
apply yourself differently; take note of
the implications of that change, and
create a more secure, tight, and suc-
cessful way of working. You feel good,
the team feels good, and then manage-
ment sees it and they feel good; com-
pany profits go up, the board and the
shareholders feel good. All that from
one small change. Only you control
your destiny so make it work for you.
Insist on change.

Anyway, back to testing. The time
has come to put our former ways of
testing behind us and look properly at
what we do. Take the following exam-
ple:

public class Calc {

public Calc(){}

public add(int a, int b){

return a+b;

}

public subtract(int a, int b){

return a-b;

}

public static void main(String[] arg s){

Calc c = new Calc();

System.out.println(c.add(1,2));

System.out.println(c.subtract(5,2));

// ooh! It works :)

}

}

It’s very easy to assume that this
class has been tested and what I’ve
been guilty of (I can only assume
countless others as well; I just hope
someone else confesses :-)) is accept-
ing in my mind that it’s okay. What we
really should be doing is supplying
proof to everyone else that it works! I
don’t want JUnit tests to be optional; I
want them to be mandatory! Eclipse
does a nice job of creating unit tests,
but it would be nice if Eclipse (or insert
the IDE of your choice) could monitor
the methods and create unit tests for
them automatically. Then all you’d
have to do is create some test data and
run the tests. Easy, simple, and you’d
have evidence.

It’s all too easy to fall into the trap
of delivering code that you think is
okay, but in no time at all management
is at your desk demanding to know
why the application is not working.
What evidence do you have with no
unit tests? Effectively none. Now I
openly admit that I have sat on the
fence for far too long concerning this,
and I think it’s one of the reasons that
management spits fire and loathes
some IT departments. At the end of the
day there is only one person who can
change my predicament – me.

Let’s put down our lattes/smooth-
ies/stock options and start writing
some proper unit tests, with decent
test data and proper outcomes. I’m fed
up with the stigma. If you want more
info on JUnit, have a look at
www.junit.org. There’s also an article in
JDJ called “Test First, Code Later” by
Thomas Hammell and Robert
Nettleton (Vol. 7, issue 2) that’s excel-
lent as well.

Testing,
Testing . . .

W

J2SE INSIGHT

Testing, Testing . . .

The time has come to put

our former ways of testing

behind us and look properly at

what we do.

XML Data Binding with

JAXB and UBL

As more and more industries

standardize their data formats

around XML, Java developers are

challenged to keep up. XML data

binding relieves the pain of any

Java programmer who has ever

winced at having to work with a

document-centric

processing model.

Jason Bell is a programmer and
chief technical officer for a B2B

Web portal in York, England. He
has been involved in numerous
Web projects over the past five

years, the last two of which have
been servlet-based.

jasonbell@sys-con.com

44

46

Jason Bell
J2SE Editor

J2
SE

H
O

M
E

J2
E

E
J2

M
E

52Performance of
Java Compilers:

An Empirical
Study

46 June 2003 www.JavaDevelopersJournal.com

s more and more industries standardize
their data formats around XML, Java
developers are challenged to keep up.
That’s especially true of developers
employing a document-centric pro-
gramming model, where an evolving
schema can expose brittleness in your
code and leave you wishing for a better
solution.

XML data binding relieves the pain
of any Java programmer who has ever
winced at having to work with a docu-
ment-centric processing model. Unlike
SAX and DOM, which force you to
think in terms of a document’s struc-
ture, XML data binding lets you think in
terms of the objects the structure rep-
resents. It does so by realizing that
structure as a collection of Java classes
and interfaces.

This is especially valuable when lots
of applications use the same document
schemas. Then the data binding
approach yields a set of standard classes
and interfaces that are reused across all
the applications. This saves work since
you don’t have to write, debug, and
maintain code to extract data from XML.
There are even more savings if you’re
developing an application for one of the
many industries that have agreed on
standard XML Schemas for business
data interchange: finance, travel, auto,
and retail, to name just four.

This article will look at two new
standards: JAXB and UBL.

SAX and DOM
SAX and DOM are among the oldest

programming models for managing
XML data (perhaps only younger than
the “desperate Perl hacker”). SAX
(Simple API for XML) is a stream
processor for XML that requires you to
implement the org.xml.sax.Content-
Handler interface. This interface
defines a set of callbacks that you regis-
ter with the SAX parser. The parser calls
your methods as it encounters various
tokens in the input stream.

SAX is fast, uses memory sparingly,
and is useful for accessing just part of a
document. It’s less efficient, though, if

you have to process the document more
than once, or need to access document
structures randomly, because it runs
through the whole document instead of
providing any navigational methods.

DOM (Document Object Model) pro-
vides a set of APIs for accessing an in-
memory representation of the XML doc-
ument. This representation forms a tree,
which the application walks through
looking for relevant information. DOM
is useful if you need to edit an XML doc-
ument, or access parts of it randomly.
However, DOM implementations tend
to be memory intensive, and sometimes
even need to store the entire document
in memory. This may not even be possi-
ble for very large documents.

Frequently, the goal of both SAX
and DOM programmers is to initial-
ize domain-specific objects with
XML data. For example, given the
element:

<Name first="John" last="Smith"/>

a SAX programmer would have to write
a content handler and a DOM pro-
grammer would have to walk a parse
tree to initialize an instance of this
domain-specific class:

public class Name {

publ ic String f i rst;

publ i c String l ast;

public String getFullName() {

return f i rst + " " + l ast;

}

...

}

Having this instance gives other parts
of the application access to XML data
using domain-specific logic. However,
you get there only by first dealing with
the document’s structure by way of SAX
or DOM. XML data binding, on the other
hand, automates this step.

XML Data Binding
XML data binding binds XML con-

structs directly to objects. Several open

source projects for binding XML to Java
have taken somewhat different
approaches. The superset of their capa-
bilities includes:
• Generating Java source code from an

XML document
• Generating Java source code from an

XML Schema (either DTD or XSD
[XML Schema definition language])

• Generating an XML document from
an arbitrary set of Java objects

• Unmarshaling an XML document
(creating in-memory objects)

• Marshaling an XML document (writ-
ing out an XML document from in-
memory objects)

• Validating an XML document, in its
unmarshaled or marshaled form

A recent standard, JAXB, standardiz-
es the XML data binding interface.

Java Architecture for XML Binding
Java Architecture for XML Binding

(JAXB) was developed in Java
Specification Request (JSR) 31. It was
written by an industry expert group
under the auspices of the Java
Community Process. By standardizing
the XML data binding interface and
providing a conformance test, JAXB
allows you to choose among different
XML binding implementations without
having to rewrite your application.
JAXB also comes with a standard imple-
mentation, which we’ll use to show you
how to bind the UBL schema to Java
objects.

UBL
Universal Business Language (UBL)

is an XML-based business language
built upon existing EDI and XML busi-
ness-to-business vocabularies. It’s the
product of the UBL Technical
Committee of OASIS. The committee
intends to have UBL become an inter-
national standard for electronic com-
merce. If you’re a J2EE programmer,
there’s a good chance UBL will be a
part of your future.

The latest UBL 0.7 release (see
References) contains schema, sample

XML Data Binding
with JAXB and UBL
Process XML documents without SAX or DOM Joe Fialli

A
Ed Mooney

XML & JAVA

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Ed Mooney is a staff engineer at
Sun Microsystems, Inc. He’s

currently the project lead for the
JAXB reference implementation.

ed.mooney@sun.com

Joseph Fialli is a senior staff
engineer at Sun Microsystems.
He is currently working on the

next version of JAXB. Previously
within Sun, he was the

specification lead for JAXB v1.0,
lead architect for Java Message

Service API v1.0.2, and added
enhancements to Java

serialization within J2SE 1.2.

joseph.fialli@sun.com

48 June 2003 www.JavaDevelopersJournal.com

XML documents, specifications, and docu-
mentation. It’s perfect for experimenting
with UBL applications. We’re going to do just
that using Java bindings generated by JAXB
from the UBL schema.

Compiling the UBL Schema into Java
Using JAXB

To compile the UBL schema into Java
classes, download the Java Web Services
Developer Pack 1.2 (see References). The
Java WSDP is a free, integrated toolkit that
allows Java developers to build, test, and
deploy XML applications, Web services, and
Web applications.

Set JWSDP_HOME to the directory where
you installed the Java WSDP. Change to
$JWSDP_HOME/jaxb/samples/ubl. Create a
directory named test, then run (xjc is JAXB’s
schema compiler):

$JWSDP_HOME/jaxb/bin/xjc.sh –d test 0p70/xsd/*.xsd

(You can also invoke xjc by way of an Ant
task.) This creates the packages in test (see
Listing 1). (Listings 1–7 can be downloaded
from www.sys-con.com/java/sourcec.cfm.)

By default, xjc puts its output into Java
packages with names derived from the
schema’s targetNamespace.

Customizing the Package Names
JAXB gives you control over the binding

process with various customizations. These
can be inline in the schema by way of XSD
annotation elements, or can be put in their
own file. In the latter case, JAXB’s xjc uses
XPath to identify which part of the schema
the customization affects. For example, this
customization:

<jaxb:bindings

schemaLocation="0p70/xsd/CoreComponentParameters.xsd"

node="/xsd:schema">

<jaxb:schemaBindings>

<jaxb:package

name="or g.oasis.ubl.cor ecomponentparameters"/>

</jaxb:schemaBindings>

</jaxb:bindints>

JAXB Package Name Customization

puts the Java classes and interfaces created
from CoreComponentParameters.xsd in the
org.oasis.ubl.corecomponentparameters
package.

ubl.xjb contains this customization and

similar ones for each of the UBL schemas.
External customization is useful for cus-
tomizing standard schemas. It allows cus-
tomization of schemas that are considered
read-only. It also allows groups sharing a
schema to bind to Java differently based on
the needs of each application.

Create a directory named classes. Then
compile the schema like this:

$JWSDP_HOME/jaxb/bin/xjc.sh -b ubl.xjb -d classes

0p70/xsd/*.xsd

This creates the packages in classes
shown in Listing 2. See Chapter 10 of the
Java Web Services Tutorial for more JAXB
binding customizations.

A Typical Binding
UBL_Library_0p70_Reusable.xsd defines

a number of types used throughout the UBL
schema. For example, Listing 3 is a simplifi-
cation of AddressType.

JAXB binds AddressType to the Java
interface shown in Listing 4. You’ll find this
interface in the directory:

classes/or g/oasis/ubl/commonaggr egatetypes.

This class file contains its implementation.

The Java WSDP comes with xjc.sh and an xjc.bat:

$JWSDP_HOME/jaxb/bin/xjc.sh -help

Usage: xjc [-options ...] <schema>

Options:

-nv : don’t validate the input schema

-extension : allow vendor extensions

-b <fi le> : e xternal b indings f i l e

-d <dir> : output generated files to <dir>

-p <pkg> : t arget package

-host <pr oxyHost> : set http.pr oxyHost

-port <pr oxyPort> : set http.pr oxyPort

-classpath <arg> : where to find user class files

-help : display this help message

The build.xml sets up the xjc target like this:

<taskdef name="xjc"

classname="com.sun.tools.xjc.XJCTask">

<classpath refid="classpath"/>

</taskdef>

xjc: The JAXB Binding Compiler

XML data binding relieves the pain of
any Java programmer who has ever

winced at having to work with a
document-centric processing model”

“

50 June 2003 www.JavaDevelopersJournal.com

classes/or g/oasis/ubl/commonaggr egatetypes/impl/

Addr essT ypeImp.java

Compiling the Generated Code
It’s easiest just to use Ant:

$JWSDP_HOME/apache-ant/bin/ant compile-generated

Creating the Javadoc

$JWSDP_HOME/apache-ant/bin/ant javadoc

JAXB’s Javadoc is particularly useful
since the generated interfaces contain
Javadoc comments with the snippet of
schema that’s bound to them. You can
use JAXB’s Javadoc customization to
add additional documentation.

The PrintOrder Application
The UBL sample in Java WSDP 1.2

reads in a UBL order instance, com-
putes subtotals and a grand total, and
prints the result to the screen. Sounds
simple enough, but there’s a lot going
on. Here’s how you run it:

$JWSDP_HOME/apache-ant/bin/ant printorder

This prints the itemized
order to the screen, with
subtotals for each item
and a grand total for the
order (see Figure 1).

PrintOrder contains the
main() (see Listing 5). It
relies on three facade
classes:

• package samples.ubl.r eport;

•

• import samples.ubl.r eport .facade.

OrderFacade;

• import samples.ubl.r eport .facade.

OrderLineT ypeFacade;

• import samples.ubl.r eport.

facade.Addr essFacade;

The Facade design pat-
tern provides a simpler,
higher-level interface.
Typically, that’s done to
isolate an application
from the complexity of the
underlying subsystems.
Here, our principle moti-
vation is to isolate our
application from changes
to an evolving schema.
Since we just wanted to
print a simple report, our
facades are read-only.

A look at printBuyer()
in PrintOrder shows that
getting the name of the

buyer contact (a person, usually) is just
a matter of calling OrderFacade’s
getBuyerContact() method (see
Listing 6).

getBuyerContact() has a simple sig-
nature (see Listing 7). In this listing,
order is a reference to
org.oasis.ubl.order.Order, which is
bound to <xsd:element name="Order"
type="OrderType"/> inUBL_Library_
0p70_Order.xsd. If that binding were to
change, for example, such that
order.getBuyerParty() returned
PartyType, we could make this one-line
change to getBuyerContact() without
affecting PrintOrder:

(BuyerPartyT ype)party = order.getBuyerPart y();

This pattern characterizes the other
methods in OrderFacade and the meth-
ods in OrderLineTypeFacade and
AddressFacade. And none of this code
relies on org.w3c.dom or org.xml.sax
interfaces.

Conclusion
JAXB makes it possible to process

XML documents without using SAX or
DOM. This saves us time when getting
started and over the long haul since we
don’t have to debug and maintain a lot
of tedious code devoted to traditional
XML processing. While this is useful for
any application that uses XML, it will
be especially valuable in those applica-
tion domains with defined XML
Schemas for business data interac-
tions.

References
• UBL0p70.zip: http://oasis-

open.org/committees/ubl/lcsc/0p70
/UBL0p70.zip

• UBL Technical Committee:
www.oasis-open.org/committees/
tc_home.php?wg_abbrev=ubl

• JSR 31:
http://jcp.org/en/jsr/detail?id=31

• Java Community Process:
http://jcp.org/

• JAXB home page:
http://java.sun.com/xml/jaxb/index.
html

• Java Web Services Developers Pack
2.0: http://java.sun.com/webser
vices/webservicespack.html

• Java Web Services Tutorial:
http://java.sun.com/webservices/do
cs/1.1/tutorial/doc/index.html

• Gamma, E., Helm, R., Johnson, R.,
and Vlissides, JM. (1998). Design
Patterns CD: Elements of Reusable
Object-Oriented Software. Addison-
Wesley Professional.

XML & JAVA
J2

SE
H

O
M

E
J2

E
E

J2
M

E

RReessoollvviinngg NNaammee CCoolllliissiioonnss
Since each XML namespace contains six sym-

bol spaces, it’s not uncommon for terminals in
one symbol space to collide with those in anoth-
er when JAXB tries to map them to Java. This
inlined customization, which handles them auto-
matically, illustrates the technique:

<xsd:schema

xmlns:xsd="http://www .w3.or g/2001/XMLSchema">

...

<xsd:annotation>

<xsd:appinfo>

<jxb:schemaBindings>

<jxb:nameXmlT ransform >

<jxb:elementName suf fix="Element"/>

</jxb:nameXmlT ransform >

</jxb:schemaBindings>

<xsd:appinfo>

</xsd:annotation>

...

</xsd:schema>

CCuussttoommiizziinngg NNaammeess ooff CCllaasssseess aanndd PPrrooppeerrttiieess
The text explains how we used an external

binding customization to change the name of the
packages used for the generated Java code. JAXB
also lets you rename classes and properties.

SSeettttiinngg GGlloobbaall BBiinnddiinngg BBeehhaavviioorr
This illustrates only some of the possible

global bindings:

<globalBindings collectionT ype="indexed"

fixedAttributeAsConstantProper ty="true"

generateIsSetMethod="true"/>

This customization:
• Represents collections as a JavaBean indexed

property that also has a length() method (by
default, JAXB collection properties are
java.util.List).

• Maps all fixed attributes as Java constants.
• Generates an isSet method for JAXB proper-

ties with a primitive base type (such as int) or
base type of List. The isSet method allows
you to determine if the getter for an optional
property is returning the property’s default
value or if it is returning a value set within
the XML document. This helps you determine
what was in the original XML document,
although typically, JavaBeans don’t care.

CCoonnttrroolllliinngg tthhee BBiinnddiinngg ooff aann XXMMLL SScchheemmaa
EElleemmeenntt ttoo iittss JJaavvaa RReepprreesseennttaattiioonn aass aa TTyyppee--SSaaffee
EEnnuummeerraattiioonn CCllaassss

<jaxb:globalBinding

typesafeEnumBase="xsd:string"/> can be used
to customize the enumeration members and their
values of simpleType with enumeration facets that
derive by default from xsd:string (there’s a default
type-safe enumeration binding for NCName).

Common Applications of Binding Customization

Date: February 2, 2003

Sold To: George Tirebiter
c/o Bills Microdevices
413 Spring St
Elgin, IL 60123

1. Part No.: 32145-12
Description: Pencils, box #2 red
Price: $2.50
Qty.: 5
Subtotal: $12.50

2. Part No.: 78-697-24
Description: Xeorox Paper- case
Price: $30.00
Qty.: 12
Subtotal: $360.00

3. Part No.: 091356-3
Description: Pens, box, blue finepoint
Price: $5.00
Qty.: 10
Subtotal: $50.00

4. Part No.: 543-165-1
Description: Tape, 1in case
Price: $12.50
Qty.: 3
Subtotal: $37.50

5. Part No.: 984567-12
Description: Staples, wire, box
Price: $1.00
Qty.: 10
Subtotal: $10.00

6. Part No.: 091344-5
Description: Pens, box red felt tip
Price: $5.00
Qty.: 5
Subtotal: $25.00

7. Part No.: 21457-3
Description: Mousepad, blue
Price: $0.50
Qty.: 12
Subtotal: $6.00

Joes Office Supply
32 W. Lakeshore Dr
Chicago, IL

Total: $501.00

Figure 1

52 June 2003 www.JavaDevelopersJournal.com

ow fast should our Java code be to be considered
fast? After all, speed is a relative concept. I’ll compare
the results of CPU performance for the following JVMs:
Sun’s J2SE 1.4.1, 1.4.0, 1.3.1, and Jikes. These results can be
used to make a number of educated decisions such as choos-
ing a JVM, deciding on algorithmic designs, and selecting the
right method from the API. They provide an overall assess-
ment of performance that’s not custom related since the
code used is quite common and drawn directly from Sun’s
Java APIs.

This article studies the Java APIs for an extra boost in per-
formance. It’s not a new idea, and is often referred to as
micro-benchmarking (MBM). However, a systematic and
thorough performance analysis at that level is still missing.
Herein, I’ll address performance as speed, measured in wall
clock time. I’ll cover various Java Virtual Machines (JVMs),
and show that the results differ significantly. A study of mem-
ory consumption is also warranted, but it will not be
addressed here; for such an analysis, visit www.marmanis
.com. See the Resources section for references to perform-
ance studies.

When dealing with performance, one of the major diffi-
culties is the many “scales” or layers that are usually involved
in Java applications, especially in enterprise Java applica-
tions. I categorize performance problems based on their
scale:
1. System architecture
2. Algorithm selection
3. Code implementation
4. System configuration
5. System infrastructure

Only categories 1, 2, and 3 are directly related to the Java
programming language. Problems in category 1 can be dealt
with or, even better, prevented, by the proper use of J2EE
Blueprints, the Java version of design patterns for enterprise
applications (see http://java.sun.com/blueprints/enterprise
and www.theserverside.com/patterns/index.jsp). Categories
4 and 5 involve handling and testing components that may
be irrelevant to Java per se. These categories are given in
order of decreasing importance. Experience shows that you
will get most of your performance increase from improve-
ments in categories 1 and 2, regardless of how you measure
performance! Nevertheless, if you want to squeeze as much
performance as possible out of your infrastructure, it’s worth
knowing what the performance of your fundamental APIs is.
This part of performance is aptly called micro-performance
and it belongs to category 3.

Micro-
Performance

This article
addresses the per-

formance of Java applica-
tions with respect to the underlying JVM, and is based only
on the standard API classes and algorithms that are imple-
mented by them. We do this in order to establish results that
are widespread in their applicability. No matter what code
you write, you can decompose it into parts that can be stud-
ied as individual units. The performance of the whole is
equal to the performance of its parts plus the overhead of the
interaction between the parts. The simplest parts that you
can decompose are the classes that are offered by the Java
API. Thus, knowing how well these parts perform can be cru-
cial to the overall performance of your product.

Before we go any further, I’ll justify why it’s a good idea to
know about micro-performance. It may be considered
unnecessary to examine the performance at its finest granu-
larity. However, most performance-tuning strategies neglect
the fact that the right choice, at the micro level of the code,
can squeeze out speed without making the code more com-
plicated or error prone. Moreover, it is something that every-
one can do; no special training is needed to choose the
method that is the fastest of a variety of possible methods
and equally effective for the task at hand.

Typically, an engineering team will employ a profiling tool
that will pinpoint the location of “hotspots” (memory-
and/or CPU-intensive code fragments). This is certainly a
valid way of improving performance, but it says nothing
about global performance. If your code throughout is slow,
then a profiling tool won’t help.

Global performance excellence stems from a global
enforcement of best practices, i.e., fast implementations
throughout the code. We would like to see extremely fast Java
applications, especially enterprise applications, and our
maxim is that optimal code should be used everywhere in
the source code. A fitting analogy here is the saying, “A water
tower can be filled one teaspoonful at a time.” Best practices
can be revealed by a detailed study of the available APIs and
documentation of the findings. Implementing the fastest
code doesn’t necessarily mean the code will be more error
prone; you can be fast and accurate simultaneously. I hope
this article contributes toward that end.

For the purpose of illustrating micro-performance bench-
marks, we will use four Java Virtual Machines. Three of them
(J2SE 1.3.1_07-b02, 1.4.0_03-b04, and 1.4.1-b21) are provided

J2
SE

H
O

M
E

J2
E

E
J2

M
E

H

54 June 2003 www.JavaDevelopersJournal.com

by Sun Microsystems, Inc. (http://java.sun.com/j2se/), and
the other (Jikes 1.3.0) is provided by IBM (http://oss.soft-
ware.ibm.com/developerworks/opensource/jikes/). One of
the design guidelines for Sun’s version 1.4 was to improve the
performance and scalability of the Java platform; you can
read more about their specific rationale at http://java.sun
.com/j2se/1.4/performance.guide.html.

The bytecode for each run was created by the compiler
that comes with each distribution. (The source code can be
downloaded from www.sys-con.com/java/sourcec.cfm.) All
the compilers were invoked as follows (see also the scripts
that are provided):

%JVM_HOME%\bin\javac -g:none -O Test[i].java

where %JVM_HOME% is the path to the distribution that we
target, and Test[i].java is the Java class that corre-

sponds to one of our tests (e.g., Test2.java). The
flag -O eliminates optional tables in the

class files, such as line number and local

variable tables. This provides only a
small performance improvement on the

generated code, although if our class files had
been sent across a network, it could have helped

significantly. IBM and Sun have no plans for bytecode
optimization; they’d rather focus on runtime optimization
(see www.nejug.org/2000/sept00_slides/java
perf.htm).

Once the bytecodes were created, they were executed by
the target runtime:

%JVM_HOME%\bin\java -server %JVM_XMX% %JVM_XMS% Test[i]

where %JVM_HOME% is again the path to the distribution
that we target, and Test[i] is the Java bytecode that corre-
sponds to one of our tests (e.g., Test2.class). The JVMs by Sun

offer the following options: client, server, and hotspot.
For the 1.4.x versions, the hotspot is a synonym for the

client JVM. I’ve chosen to use the server JVM, although it
should be easy for the user to experiment with the client JVM
by changing the respective flag in the scripts. In general, the
differences between the server and the client versions are
related to the JVM tuning. The client JVM is tuned to reduce
application startup time and memory footprint, which is
important when running desktop applications. The server
JVM is intended for use in server applications where the JVM
will run for long times and peak performance is more impor-
tant than footprint and rapid startup. Both options are of
interest, although Java is clearly more prevalent on the server
side.

Last, I’ve also chosen to fix the size of the heap in order to
remove the burden of resizing the memory, which is one of
the garbage collection responsibilities. This doesn’t prohibit
the garbage collector from doing its work. The question that
we really ask is this: Given a fixed amount of memory for
each JVM, which JVM performs the exact same code faster?

During that time – not longer than a few minutes in the
worst case – the JVM that spends the least time dealing with
garbage collection will have an advantage over the other
JVMs.

I’ll employ only one operating system platform, namely,
the Windows 2000 Professional. However, it should be clear
that for a complete and useful assessment of micro-perfor-
mance, the same benchmarks should be run for other oper-
ating systems as well, such as Linux, Solaris, and AIX. The
Windows system that I’ll use runs on a Dell Inspiron 4100,
with total physical memory of 654,776KB; BIOS PLUS Version
1.10 A09; and x86 Family 6 Model 11 Intel CPU at 1,100MHz.
Results for a Linux system that runs on a Micro PC, with total
physical memory of 772,856KB and an AMD Athlon
Processor at 1,134MHz, should be available on my Web site.
For the Linux platform, there is also a JVM that’s offered by
the Blackdown open source project (see www.blackdown
.org). There are more JVM implementations available and I’ll
make an effort to include as many of them as is possible on
my Web site.

The Benchmarks
I’ll present 19 benchmarks that cover some of the follow-

ing: basic arithmetic operations, java.lang package, java.io
package, java.util package, and java.security package. I refer
to each test by concatenating the character “T” and the
respective enumeration of the test. Thus T1 will refer to Test
1, T2 will refer to Test 2, and so on. Obviously, this is not an
exhaustive list and the choices are based on what I think are
popular method calls.

The code for the benchmarks was written with simplicity in
mind. The theme is the same for all benchmarks. They all con-
sist of some setup code and some code inside a for loop whose
timing is the goal of each benchmark. Thus, each benchmark
repeats for a “reasonable” time a call to a small piece of Java
code. I use System.currentTimeMillis() to measure the wall
clock time (in ms). To take into consideration the time spent

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 List of services

“Global performance excellence stems from a
global enforcement of best practices, i.e., fast

implementations throughout the code”

Need an Embeddable
Process Engine

Without All the
BAGGAGE?

We’ve got
The Answer SM

Workflow Automation – Business Process Integration – Web Services Orchestration

Let’s get right to the point. Reactor 5 from Oak Grove Systems is the process execution framework that
gives you exactly what you need. Period.

One lean, mean, singularly focused machine, Reactor 5 is already the solution of choice for such firms as
SAS, Sybase and Plumtree Software, allowing them to cut their costs, speed their time to market and free
their developers to concentrate on their core products. Reactor 5’s benefits include:

■ Universal Deployability - Reactor 5 is compatible across all J2EE application servers
■ Easy Integration - Featuring an open, standards-based architecture
■ The Only Process Engine You Need - For workflow automation, business

process management and Web Services orchestration

Available as source code with royalty free distribution!

So take a load off. And you can start by calling us at 1-818-880-8769, or by downloading your free
evaluation copy at www.oakgrovesystems.com/jdj

The Answer SM - For All Your Process Execution Needs

©
 2

00
3

O
ak

 G
ro

ve
 S

ys
te

m
s.

 A
ll

rig
ht

s
re

se
rv

ed
.

Visit us at
JavaOne
Booth
#1336

56 June 2003 www.JavaDevelopersJournal.com

for the loop, I always run a baseline test first to obtain the ref-
erence time, i.e., the time spent in a loop without code in it.
Rather than subtracting the reference time from the reported
value, I report both. I’ll also report the number of iterations
since this varies among our benchmark tests. I’ll often include
several method calls inside the loop so we can examine the
efficacy of some API classes in an aggregate fashion; see, for
example, the benchmark Test5.java. A more granular approach
is, of course, what this article proposes and I’ll publish and
maintain on the Web more fine-grained results.

Let’s now see what each test measures and analyze
its results. All values refer to ms and the loop

size was chosen so that I’d weed out any
fluctuations of the CPU due to unrelated

processes. Figure 1 shows a snapshot
of the list of services that run during the

test and Figure 2 shows a snapshot of the
process list from the TaskManager of the

Windows OS. Inside parentheses I include the ratio
of performance for each JVM when compared to the Sun
1.4.1 JVM. Hence, a value smaller than 1 means that the JVM
is faster than Sun’s 1.4.1 JVM, and a value larger than 1
means that the JVM is slower than Sun’s 1.4.1 JVM; therefore
the value inside the parentheses will always be equal to 1 for
the last column.
1. T1 measures the performance for typical numerical opera-

tions. I use a long and two double numbers, and perform
an addition, a multiplication, and a division with constant
numbers.

2. T2 defines a number of variables of type string and uses
the method equals to compare them. Inside the loop I use
several different string comparisons, since the speed of the
algorithm is not uniform across all possible strings. Hence,
my results will give a good estimate of the method’s per-
formance for strings that are equal in length or vary by one
character.

3. T3 has the same setup as T2 but uses the method
equalsIgnoreCase.

4. T4 has the same setup as T2 and T3 but uses the method
compareTo.

5. T5 tests the performance of some commonly used
mathematical functions. The class java.lang.Math has
various useful mathematical functions. We test the
method that creates a random number, random(); the
method that calculates the cosine of an angle, cos; the
method round that returns the closest long to its argu-
ment of type double; the method that calculates the
absolute value of a number, abs; the methods that
return the exponential and the logarithm of an argu-
ment, exp and log, respectively; the method that gives us
the maximum between two numbers, max; the method
that gives us the square root of a number, sqrt; and

finally the method that raises one number to a certain
power, pow.

6. Another common task for many applications is the read-
ing of a properties file. This is usually done by reading
the file via the java.io API and loading the values on a
Properties class that’s provided in the java.util package. I
do just that in T6.

7. As you may very well know by now, string concatenation
is much slower than the append method of a
StringBuffer. T7 tests how quickly this works for the vari-
ous JVMs under study. Some time is spent to find the
length of the StringBuffer each time and delete all its
content so that the StringBuffer is empty at the begin-
ning of each iteration. In total, we have six append calls,
one length, and one delete.

8. In T8 I measure the performance of the various classes
that are needed to encrypt and decrypt a 128-character
string. I use the SunJCE provider and a triple DES key
spec. In particular, I initialize the Cipher with
“DESede/ECB/
PKCS5Padding.” Jikes does not run with exactly the
same code in this case, so an N/A appears in the corre-
sponding position of the table.

9. In T9 I serialize, write to the disk, read from the disk, and
deserialize a Vector object.

10. In T10 I test the performance of the method add in an
ArrayList.

11. In T11 I test the performance of the method add in a
Vector.

12. In T12 I test the performance of the method add in a
HashSet.

13. Since the above three tests add Random objects in the
various collections, I run a test, (T13), that measures the
time that the generation of these objects takes. These
times will be referenced side-by-side with the times that
I obtain from T10, T11, and T12.

14. In T14 I test the performance of the method remove in
an ArrayList.

15. In T15 I test the performance of the method remove in a
Vector.

16. In T16 I test the performance of the method remove in a
HashSet.

17. A typical way of iterating through the elements of a col-

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 2 Process list

“In the competitive market of enterprise apps,
it’s worthwhile to get as much performance

as you can out of the standard APIs”

58 June 2003 www.JavaDevelopersJournal.com

lection is by using the Iterator object. In T17, I obtain the
Iterator of an ArrayList and iterate through all its ele-
ments.

18. In T18 I obtain the Iterator of a Vector and iterate
through all its elements.

19. In T19 I obtain the Iterator of a HashSet and iterate
through all its elements.

Conclusion
I cannot emphasize enough the importance of the data

on the performance of a method call when attempting to do
micro-benchmarks. The space that is usually covered by the
arguments of an operation, or of a method call, is vast.
Although indicative values can be obtained, the results are

applicable only for the space of the arguments that they
cover. With that “alert” status in mind, let’s proceed and draw
some conclusions.

The results for T1 (see Table 1) show that the Sun JVMs
take advantage of the fact that the second operand is a con-
stant and achieves some aggressive optimization of arith-
metic operations. Nevertheless, all JVMs are quite fast and
achieve billions of operations per second.

The results of T2, T3, and T4 (see Table 2) show that
compareTo is two to three orders of magnitude faster than
either of the equals methods. In my study – not shown here –
I have found that the method call equalsIgnoreCase of the
class String is a lot faster than the method call equals of the
same class when the majority of the compared data have dif-
ferent lengths. There is a good reason for this, of course. The
equalsIgnoreCase first checks the length of the two strings.
Nevertheless, the point is that if you know that piece of infor-
mation and you happened to extensively use string compar-
isons, you can take advantage of it without paying a penalty;
if case does matter, then obviously this is not appropriate!

The results of T5 (see Table 3) show that the mathematical
functions are two orders of magnitude faster with Jikes than
with any of the Sun JVMs. Hence, if you rely heavily on com-
puting cosines and logarithms, you should definitely take
that into consideration when picking your JVM. However, the
results of T6 and T7 show that there is not really a difference
between the JVMs when it comes to loading a properties file
and using the append method, respectively.

The results of T8 (see Table 4) show that encryption-relat-
ed methods in the Sun 1.4.x JVMs are an order of magnitude
faster than the same methods in Sun 1.3.1. Thus, if encrypt-
ing and decrypting is bread and butter for you, you have one
more reason to upgrade your JVM!

The results of T9 (see Table 5) show that serialization to
(upper readings) and deserialization from (lower readings) a
file with the Sun 1.3.1 JVM is faster than any other JVM. Jikes
is faster than both of the Sun 1.4.x JVMs. However, all the
JVMs are in the same order of magnitude in terms of the time
spent to accomplish the task.

The results of T10, T11, and T12 (see Table 6) show that
the add method is equally fast for an ArrayList and a Vector.
However, Jikes is faster by a factor of at least two, regardless
of the Collection class that’s used. A somewhat disturbing
result is that the Sun 1.4.x JVMs seem to be slower than the
Sun 1.3.1 JVM for the ArrayList and the Vector classes. This
result consistently appeared in the runs that were made in
preparation for this article, so there should be a reason for it.
As we’ll see later, that doesn’t happen with the remove
method or the iterator. It would be nice if the Sun engineers
would take a look at it.

As expected, the add method in the HashSet class is slow-
er than the same method for the ArrayList and the Vector
classes. It’s extremely slow in Sun 1.3.1, by three orders of
magnitude when compared to all other JVMs. The removal
and the iteration in the HashSet class are also slow with the
Sun 1.3.1 JVM, by an order of magnitude compared to all the
other JVMs.

The results of T14 and T15 (see Table 7) show that the
remove method is equally fast regardless of the JVM. T16
shows that the same method is faster for a HashSet than for
an ArrayList or a Vector; however, the method is an order of
magnitude slower among the tested JVMs for the Sun 1.3.1
JVM.

Finally, the results of T17, T18, and T19 (see Table 8) show
that the iteration with the Sun JVMs is faster than the itera-
tion with Jikes by, at least, a factor of two; the caveat here is

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Table 1

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT11 50,000,000
100
(10)

20
(2)

20
(2)

10
(1)

Table 2

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT22 50,000,000
15723
(0.88)

8462
(0.47)

16063
(0.90)

17806
(1)

TT33 50,000,000
122646
(1.26)

146551
(1.51)

99403
(1.02)

96989
(1)

TT44 50,000,000
33027
(412.8)

100
(1.25)

80
(1)

80
(1)

Table 3

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT55 50,000,000
5928
(0.05)

122787
(1.02)

134934
(1.12)

120553
(1)

TT66
2,000

2764
(1.22)

2329
(1.03)

2136
(0.94)

2270
(1)

TT77 50,000,000
32046
(0.98)

32527
(0.99)

31635
(0.97)

32737
(1)

Table 4

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT88 100,000 n/a
178606
(5.06)

58815
(1.67)

35281
(1)

60 June 2003 www.JavaDevelopersJournal.com

the problematic iteration of the HashSet, mentioned earlier.
The study presented here should not be considered com-

plete. The purpose of this article is to distinguish the many
scales that may affect the performance of Java applications,
pay particular attention to what I call micro-performance,
and to suggest one way to tackle the problem through
detailed benchmarks of the APIs. The article demonstrates
these ideas by employing a very small, but quite popular,
portion of the APIs.

The performance of the Java API method calls clearly
depends on the JVM. However, the differences are not uni-
form – you can’t claim that JVM-1 is always faster than JVM-
2. That in itself is not news, of course, but it is important to
quantify the differences because you may find that for your
own application JVM-1 is better than JVM-2, and you may
want to instill micro-benchmarking in your own or your
team’s coding practice.

In the competitive market of enterprise applications, it’s
worthwhile to get as much performance as you can out of
the standard APIs. To know how to get that advantage, we
need to quantify the performance of the Java language at the
level of its APIs. The point is that if you can get faster code
without “collateral damage” – to use a, regrettably, quite fash-
ionable term at the time of this writing – why not do it?

It was my initial desire to include the analysis of the GC
output in this article; however, this would double, if not
triple, its size. Nonetheless, I strongly recommend you collect
such output (e.g., by using –verbose:gc as a flag to the JVM)
and observe how the various JVMs collect their garbage over
time. That’s quite instructive. In addition, if you feel the urge
to truly understand your JVM, use its optional flags as new
parameters in your analysis of the results.

For any application of substantial size and complexity, a

proper micro-performance tuning may produce significant
speedups. Not comparable to the speedups that you can get
by choosing a better architecture, or a better algorithmic
approach; at the first stages of performance tuning even a
factor of 10 is possible, in some cases. But when your archi-
tecture is appropriate and your algorithms optimal, it is likely
that micro-tuning your application is a nice-to-have weapon
in your arsenal. If you have already adopted micro-tuning
during your code implementation, you’re probably grinning
right now in a self-satisfied manner!

Resources
• Shirazi, J. (2003). Java Performance Tuning, 2nd Edition.

O’Reilly & Associates, Inc.
• Wilson, S., and Kesselman, J. (2000). Java Platform

Performance: Strategies and Tactics. Addison-Wesley Pub
Co. http://java.sun.com/docs/books/performance/

• BEA WebLogic JRockit Virtual Machine:
www.bea.com/products/weblogic/jrockit/index.shtml

• Java 2 Platform, Standard Edition (J2SE):
http://java.sun.com/j2se/

• Jikes: http://oss.software.ibm.com/developerworks/
opensource/jikes/

• Blackdown Project: www.blackdown.org
• Java BluePrints: http://java.sun.com/blueprints/

enterprise/
• TheServerSide.com:

www.theserverside.com/patterns/index.jsp
• Java 2 Platform, Standard Edition (J2SE):

http://java.sun.com/j2se/1.4/performance
.guide.html

• Haggar, P. “Improving Java Code Performance”:
www.nejug.org/2000/sept00_slides/javaperf.htm

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Haralambos Marmanis is a
software architect at Zeborg. He

has more than 12 years of
software development

experience in academia and the
industry. He received his PhD in

applied mathematics and
scientific computing from Brown

University. His interest is in
multitier, high performance,

enterprise software.

marmanis@computer.org

Table 6

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT1100 4,000,000
2364
(0.31)

4106
(0.54)

8062
(1.06

7621
(1)

TT1111 4,000,000
2413
(0.31)

4146
(0.54)

8072
(1.05)

7671
(1)

TT1122 1,000,000
1502
(0.34)

250089
(57.28)

4576
(1.05)

4366
(1)

TT1133 4,000,000

1,000,000

2003
(0.46)
511

(0.43)

2313
(0.53)
641

(0.54)

4787
(1.09)
1292
(1.08)

4396
(1)

1192
(1)

Table 7

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT1144 100,000
6759
(1)

6760
(1)

6749
(1)

6760
(1)

TT1155 100,000
6750
(1)

6760
(1)

6760
(1)

6759
(1)

TT1166 100,000
30

(0.43)
281

(4.01)
71
(1)

70
(1)

Table 5

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT99 1,000,000
5678
(0.87)
4978
(0.86)

4687
(0.72)
4035
(0.70)

9344
(1.43)
5738
(1)

6549
(1)
5758
(1)

Table 8

Test Loop
size

Jikes
Time

Sun131
Time

Sun140
Time

Sun141
Time

TT1177 4,000,000
821

(3.04)
320

(1.19)
230

(0.85)
270
(1)

TT1188 4,000,000
891

(2.87)
401

(1.29)
360

(1.16)
310
(1)

TT1199 4,000,000
321

(1.15)
3045

(10.88)
310

(1.11)
280
(1)

62 June 2003 www.JavaDevelopersJournal.com

recent J2ME-related announcement I
find particularly interesting for a num-
ber of reasons is esmertec’s demon-
stration of a MIDP 2.0 implementation
on BREW. First, esmertec recently
acquired Insignia, whose Jeode
Embedded Virtual Machine for Java
has made PersonalJava available on
PDAs for some time. Is this acquisition
the beginning of consolidation in the
J2ME world, or an isolated incident?

Second, this is the first deployment
of a MIDP 2.0 implementation I’ve
heard of. While MIDP 1.0 has been
available on BREW via Insignia prod-
ucts for some time, the final MIDP 2.0
spec was released just this past
December, and the short turnaround
time for Insignia’s implementing 2.0 is
a statement of their confidence in
J2ME.

And finally, the availability of the
MIDP on BREW benefits both J2ME and
BREW. While BREW and J2ME are some-
times characterized as competitors,
there are many reasons to consider them
as complementary technologies. J2ME
on BREW makes a much larger develop-
er community and, consequently, a
much larger set of applications available
to BREW-enabled handsets. Conversely,
BREW provides J2ME developers with
ready-made services for provisioning,
billing, and revenue collection.

One concern with the MIDP on
BREW is whether the layering of the
MIDP on top of BREW will introduce a
significant performance penalty. Of
course, one approach for improving per-
formance on any JVM is the use of soft-
ware techniques such as just-in-time
and ahead-of-time compilation, which
are as applicable in the J2ME world as in
the J2SE world. But handheld devices
also lend themselves to performance
improvement via hardware enhance-
ments that may not be applicable to or
as attractive for PCs and servers.

I recently spoke with Jerry Steach of
NanoAmp about one such technology,
their MOCA-J product. This is a combi-
nation of a dedicated Java bytecode
accelerator (206 of the 227 Java byte-
codes are executed directly in hardware
rather than being interpreted) and a

cache. In addition to significantly faster
execution of Java applications
(NanoAmp claims a 20x improvement
over the Sun reference KVM), hardware
execution of bytecodes plus on-chip
power management uses significantly
less battery power than software execu-
tion of the bytecodes, and battery drain
is always a concern with mobile devices.

The MOCA-J accelerator and cache
are two separate dies bonded together
that are in turn bonded to a flash
memory die provided by a chip manu-
facturer. Since handsets already
require memory, melding the MOCA-J
with already-needed flash allows the
incorporation of MOCA-J into the
handset without using any additional
circuit board space, also a significant
concern with mobile devices.

For me one of the attractions of
J2ME is the variety of technologies that
come into play when considering the
J2ME landscape. Interesting combina-
tions such as BREW and J2ME, innova-
tive hardware solutions (such as
MOCA-J) to the resource limitations of
mobile devices, and the incorporation
of other technologies such as
Bluetooth, all create a multi-hued
palette that colors the J2ME landscape.

• • •
Here at JDJ the majority of our arti-

cles come from you, our readers. A
reader will propose an article idea (via
www.sys-con.com/java/authors),
which we’ll review for topicality and
other factors. If the proposal is accept-
ed, we then work with the author to
scope the article size, review drafts, and
move the article toward publication.

I ask you to consider sharing with
our readers your experiences and
knowledge gained from developing
J2ME applications. It’s a great way to
make new contacts in the industry –
after my first article I received e-mail
from developers in Hong Kong and
France – and having a “publications”
item on your résumé can make it dis-
tinctive, which can be of particular
value in today’s tight job market. And
there is always the personal satisfaction
to be gained by attempting something
different and out of the ordinary.

Interesting
Technologies

A

J2ME INSIGHT

Interesting

Technologies

For me one of the

attractions of J2ME is the variety

of technologies that come into

play when considering the J2ME

landscape.

P800 by Sony Ericsson

For those of you who

haven’t already come across a

review of Sony Ericsson’s smart

phone offering, I’ll briefly run

through what the P800 offers

outside of the Java space
Glen Cordrey is a software archi-
tect working in the Washington,

DC, area. He’s been using Java
for five years, developing both
J2EE and J2ME applications for

commercial customers.

glencordrey@sys-con.com

62

72

Glen Cordrey
J2ME Editor

H
O

M
E

J2
E

E
J2

SE
J2

M
E

64J2ME Clients
with Jini Services

BREW CAN TURN J2ME INTO $4U.

GOT J2ME APPS? BREW = IMED8 OPR2NTY 4 JAVA DEVELOPERS 2 BLD FORTUNE.

In plain, simple English, BREW is the open, end-to-end wireless development solution that’s

compatible with Java.The BREW Distribution System can put your J2ME application into the

hands of millions of paying customers fast. And the worldwide market is growing, as operators

and OEMs continue to adopt the BREW platform. Learn how you can make money with BREW

for Java applications. Read the Brew and J2ME White Paper at www.qualcomm.com/brew.
©2003 QUALCOMM Incorporated.All rights reserved.QUALCOMM is a registered trademark of QUALCOMM Incorporated.BREW and Customize.Personalize.Realize. are trademarks of QUALCOMM Incorporated. Java and J2ME are registered trademarks of Sun Microsystems, Inc.

™ ™ ®

TM TM

64 June 2003 www.JavaDevelopersJournal.com

ini provides simple and
reliable access to services over
any network, independent of platform, protocol, or applica-
tion technology. Enterprises can use Jini to develop a
resilient service-oriented architecture that can be accessed
from a broad range of clients.

Java 2 Micro Edition (J2ME) enables developers to build
portable rich-client solutions that can operate in either con-
nected or disconnected modes. The combination of J2ME-
enabled devices interacting with enterprise systems through
Jini services provides a flexible architecture for building high-
ly reliable, end-to-end mobile solutions.

However, for any client to directly access and/or run Jini
services, it must be capable of dynamically downloading and
executing Java classes and be able to participate in Jini
Discovery and Join protocols. Currently, many J2ME-enabled
devices with limited resources don’t have this capability and
can’t directly participate in a Jini network. This article pro-
vides an overview of the technologies, and, with the help of
an example, illustrates how to overcome the limitations of
J2ME to develop an effective mobile architecture based on
J2ME and Jini.

Jini Primer
From the official Jini architecture specification,

wwws.sun.com/software/jini/specs, the Jini system is
defined as:

…a distributed system based on the idea of federating groups
of users and the resources required by those users. The focus of
the system is to make the network a more dynamic entity that
better reflects the dynamic nature of the workgroup by
enabling the ability to add and delete services flexibly.

A Jini system uses the network as a foundation to enable
service discovery and service execution. Traditional systems
attempt to mask the appearance of the network; in contrast,
Jini uses the dynamic, flexible nature of the network to form
communities and register, discover, and invoke services.
Unlike traditional systems, Jini is founded on the assump-
tions that networks are unreliable, change frequently, and
should not require substantial maintenance by an adminis-
trator.

To address the assumption that networks are unreliable,
Jini systems are self-healing. Jini services repair themselves
using the concept of leasing. Leasing ensures that Jini serv-
ices are automatically removed from the community after a

specified time period, without the need for
administrator intervention. The network topology can

change, but Jini will continue to work without the need to
update the URLs referenced in services, change properties
files, or perform manual administration. Jini services adapt
to such changes automatically. Communication with a Jini
service occurs through service proxies that are downloaded
to the client machine automatically without administrator
involvement, a practice that is normally required in tradi-
tional architectures.

Jini Architecture
The Jini architecture (see Figure 1) is comprised of the fol-

lowing elements:

Jini Service
A Jini service is an entity that can be a hardware device or

a software component that provides functions like printing a
report, looking up a stock quote, or executing an algorithm.
Applications and other Jini services can use a Java interface
and a Java proxy class to access a Jini service. The Java inter-
face provides the definition of the methods that are available
from the Jini service. The Java proxy provides the communi-
cation channel between the client and the actual service. Jini
services are registered with the lookup service and are capa-
ble of being invoked through their public interface, which is
defined via a Java remote interface. In most cases, the under-
lying system that allows Jini services to communicate is RMI.
A Jini service may also use protocols such as SOAP,
XML/HTTP, or CORBA.

Lookup Service
The lookup service, which is a Jini service, keeps track of

the Jini services and provides proxies to communicate with
the services. Sun provides a lookup service called Reggie
(used for developing this example) as part of the Jini devel-
opment kit.

Jini Client
The Jini client is any software that requests the proxy

from the lookup service in order to invoke the Jini service.

RestaurantFinder Application
Now that you have a good understanding of Jini and

J2ME, let’s move on to an example application that uses Jini
and J2ME to provide a valuable service to mobile users. We’ll
use this example to show you how to develop a complete

H
O

M
E

J2
E

E
J2

SE
J2

M
E

J

66 June 2003 www.JavaDevelopersJournal.com

Jini/J2ME solution that overcomes the limitations of MIDP.
DineOut Corporation has a comprehensive database of

restaurant listings, reviews, and ratings in different cities in
the continental United States. DineOut wants to build a sys-
tem called RestaurantFinder that enables DineOut’s sub-
scribers to access these listings using their J2ME-capable
cellphones. The software architecture for the Restaurant-
Finder system is shown in Figure 2.

The core components of the RestaurantFinder system are
as follows.

RestaurantFinder Jini Service
The RestaurantFinder Jini service provides the ability to

search for restaurant listings by city and cuisine. The defini-
tion for this service is given by the interface rf.service.
RestaurantFinder (see Listing 1) and the Java proxy for this
service is provided by the class rf.service.Restaurant-
FinderImpl (see Listing 2). (Listings 2–5 can be downloaded
from www.sys-con.com/java/sourcec.cfm.) Using Jini to
develop the RestaurantFinder service has the following bene-
fits:
1. Provides a fault tolerant infrastructure by hosting multiple

instances of the RestaurantFinder service on different
nodes in the network. Thus, if there’s a failure of one node,
users will not lose access to the service.

2. Enables an administrator to add, remove, and move
instances of the RestaurantFinder service from the net-
work without affecting the overall operation of the sys-
tem.

Jini Lookup Service
The lookup service manages a persistent store of service

registrations. The J2ME client uses the Jini lookup service to
find and locate the RestaurantFinder Jini service. Using the
lookup service decouples the J2ME client from the actual
service instance, enabling the Jini server to use multiple ser-
vice instances to handle requests from the client.

J2ME Client
The MIDP client shown in Figure 3 will access the

RestaurantFinder Jini service.
A Jini client developed using the J2ME technology has the

following advantages over a traditional thin-client WAP-

enabled cellphone:
1. It provides a rich user interface to DineOut’s subscribers

by supporting features such as on-device validation (as
opposed to server-side validation) and persistence to save
restaurant listings. Thus, users get a more responsive and
easier-to-use solution.

2. The client can operate in connected or disconnected
mode. Although users won’t have access to all capabilities
when operating in disconnected mode, they can at least
browse through saved listings, and could potentially also
perform searches if restaurant data were persisted to the
device.

J2ME Client Proxy
A MIDP device runs on the Connected Limited Device

Configuration (CLDC). The CLDC doesn’t allow the user to
load classes at runtime. This prevents the MIDP client from
acting like a regular Jini client, which has the ability to down-
load and execute the service proxy classes. To work around
this restriction, the RestaurantFinder service uses a Java
servlet given by class rf.servlet.ControllerServlet (see Listing
3) as a Jini proxy. This proxy communicates with the
RestaurantFinder Jini service on behalf of the MIDP client.
The communication between the servlet and the MIDP client
takes place over HTTP as shown in Figure 2.

Developing the RestaurantFinder System
Now that we’re familiar with RestaurantFinder’s architec-

ture, let’s have a closer look at what’s involved in developing
the RestaurantFinder system.

Developing the Jini Service
The first step in developing the RestaurantFinder service

is defining the service interface rf.service.RestaurantFinder
(see Listing 1). This interface defines the method
getRestaurants, which takes a city name and cuisine as an
argument, and returns an array of rf.service.Restaurant
objects. This interface defines the contract between the Jini
client and the Jini service.

Next, we develop the Java proxy class rf.service.
RestaurantFinderImpl (see Listing 2) that implements the
RestaurantFinder interface. During service registration, this
Java proxy is uploaded from the RestaurantFinder service
(see Listing 4) to the lookup service as shown in Figure 4. The
proxy shields the client from the actual communication with
the Jini service. When a client looks up a service, the lookup

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Figure 1 Jini architecture

Figure 2 RestaurantFinder software architecture

“A JINI SYSTEM USES THE NETWORK AS A
FOUNDATION TO ENABLE SERVICE

DISCOVERY AND SERVICE EXECUTION”

68 June 2003 www.JavaDevelopersJournal.com

service returns the proxy object for the service. Any classes
required by the proxy are dynamically loaded over the net-
work. In our example, the RestaurantFinder service is execut-
ed locally as part of the Jini client’s (J2ME Client Proxy in our
case) virtual machine. However, the Java proxy could easily
be changed to communicate using RMI with a remote
RestaurantFinder service.

Finally, the RestaurantFinder service is registered with the
Jini lookup service (Reggie). The class ServiceRegistration-
Client (see Listing 4) performs this operation.

Consider the following lines of code

ldm = new LookupDiscoveryManager(new String[]{"iguanas"}, null, null);

jm = new JoinManager(new rf.service.RestaurantFinderImpl(),

null ,

new ServiceRegistrationListener(),

ldm,

null);

The first line creates an instance of LookupDiscovery-
Manager to locate the group “iguanas”. This is a utility class
provided by the Jini reference implementation for discover-
ing groups that a service is interested in joining. Groups pro-
vide a partition mechanism for the physical Jini network. A
Jini service can belong to one or more groups. A Jini client
has to join a group before accessing the services of the
group. The RestaurantFinder service will join the “iguanas”
group. This group is created and serviced by Reggie. The
names of the group(s) to be serviced by a Reggie are provid-
ed as command-line arguments while starting Reggie as
shown below.

java -Djava.security.policy=%JINIHOME%\policy\policy.all -jar

%JINIHOME%\lib\reggie.jar http://%DOWNLOADHOST%/reggie-dl.jar %JINI-

HOME%\policy\policy.all %JINITEMP%\reggie.log iguanas -Dnet.jini.discovery.inter-

face=%ADAPTERIP%

The next line creates an instance of JoinManager. This is
another utility class that provides a convenient way to regis-
ter a Jini service with Reggie (lookup service). In our exam-
ple, an instance of the JoinManager is instantiated with an
instance of RestaurantFinderImpl proxy,
rf.service.ServiceRegistrationListener,
and LookupDiscoveryManager. The
JoinManager will register the
RestaurantFinder service and upload the
Java proxy for the server to the lookup
service.

Developing the J2ME Client Proxy
Listing 3 shows the source code for

the servlet rf.servlet.ControllerServlet
that acts as a proxy for the J2ME client.
Upon initialization, this servlet locates
the RestaurantFinder service using the
lookup service and dynamically loads
the Java proxy from the Jini lookup ser-
vice (see Figure 4).

The doPost method of the servlet
decodes the request from a J2ME client,
invokes the RestaurantFinder service,

and returns the results back to the J2ME client. Note that the
ControllerServlet only accesses the Jini service through the
interface rf.service.RestaurantFinder, thus decoupling the
servlet from the implementation of the Jini service.

Developing the J2ME Client
The last piece of the puzzle is the J2ME client, which is

developed as a MIDlet (see Listing 5) called rf.midlet.
RestaurantFinderMIDlet. MIDlets are classes that extend the

class javax.microedition.midlet.MIDlet and run on J2ME
devices that support the MIDP profile. The execution and the
life cycle of a MIDlet are controlled by special software on
J2ME devices, called Application Management Software.
MIDlets are developed on regular desktops and then
deployed to smaller devices. The example in this article was
developed using the MIDP reference implementation from
Sun.

Execution of the RestaurantFinderMIDlet starts with the
invocation of the startAPP method by the Application

Management Software. This method ini-
tializes the J2ME client and sets up a
search form as the current display for
the application (see Figure 3). Using this
form the user can select the name of the
city and the type of cuisine for his or her
restaurant search criteria. After selecting
the criteria, the user can click on the
“find” button to perform a search for
restaurants.

Clicking the “find” button triggers the
command findCommand. In J2ME, a
command is something a user can use
to interact with the client, e.g., clicking
on the “find” button. In response to the
command, the MIDlet opens up a con-
nection to the J2ME Proxy Servlet and
performs an HTTP GET as shown in
method getResult. The J2ME Proxy

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Figure 4 Dynamic class loading in a Jini network

Figure 3 J2ME client Figure 5 Search results

Ron Dearing is a senior software
engineer at Cysive, Inc., based in
Reston, VA. He has worked in the

software industry for over six
years, and is currently working in

the product development group
on the Cymbio Interaction Server.

Ron has a BS in computer
science from North Carolina A&T.

rdearing@cysive.com

Nikhil Patil has worked in the
software industry for over six

years, and is a product manager
at Cysive, Inc., where he works

on developing the strategic
vision for the Cymbio Interaction

Server. A Sun Certified Java
Developer, Nikhil has an MS in

industrial engineering and a BE
in mechanical engineering.

npatil@cysive.com

“USING A SERVLET AS A PROXY BETWEEN THE J2ME CLIENT AND THE
JINI SERVICE IS A STEP IN THE RIGHT DIRECTION FOR

INTEGRATING J2ME CLIENTS IN A JINI NETWORK”

70 June 2003 www.JavaDevelopersJournal.com

Servlet (rf.servlet.ControllerServlet) returns a list of restau-
rants in the form of an encoded string. We’ve used an encod-
ed string to keep the application simple; however, in real sys-
tems XML can be used for exchanging information between
the J2ME client and the servlet.

On receiving the results of the search query, the list of
restaurants is displayed to the user (see Figure 5).

The Road Ahead
Using a servlet as a proxy between the J2ME client and

the Jini service is a step in the right direction for integrating
J2ME clients in a Jini network. However, to fully enable J2ME
clients as “true” Jini citizens, we can use the surrogate archi-
tecture (http://surrogate.jini.org). This architecture enables
the J2ME clients to be part of the Jini network using a surro-
gate executing within a surrogate host. The surrogate knows
of the device’s capabilities and operates within the Jini feder-
ation. Services in the federation may use the surrogate just as
they would use any other service in the federation. The IP
Interconnect Adapter specification identifies the require-
ments of how the surrogate communicates with the device.
This surrogate architecture combined with J2ME enhance-
ments, like the MIDP 2.0 push API, can lead to the develop-
ment of rich wireless clients that can not only leverage the
Jini infrastructure but can also be managed as Jini services.
(At the time this article was written, the specification for the
surrogate architecture and the Interconnect adapters was not
yet fully defined.)

Conclusion
J2ME and Jini can be used to develop a highly portable,

resilient service-oriented architecture that meets the needs
of mobile users. By providing some simple workarounds to

current limitations with J2ME, it’s possible to build these
powerful solutions today.

References
• http://pandonia.canberra.edu.au/java/jini/tutorial/

Jini.xml
• Edwards, W. K. (2001). Core Jini (2nd Edition). Prentice Hall

PTR.
• Edwards, W. K., and Rodden, T. (2001). Jini Example by

Example. Prentice Hall PTR.
• http://java.sun.com/j2me/
• Knudsen, J. (2003). Wireless Java: Developing with J2ME.

APress.

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Listing 1

package rf.service;

import java.rmi.RemoteException;

/**
* Interface for the RestaurantFinder Jini Service. Jini clients using the
RestaurantFinder
* service will be program against this interface.
*
* @author Nikhil Patil
*/
public interface RestaurantFinder
{

/**
* Returns an array of Restaurants based on the name of the city and type of

cuisine.
*/
public Restaurant[] getRestaurants(String city, String cuisine) throws

RemoteException;
}

Get the full story – attend an exclusive webinar:

http://java.quest.com/qcj/jdj

Quest CentralTM

for J2EE

It shouldn’t be happening, but it is – unexpected performance

problems in your production J2EE application! Now’s not the time

for guesswork and random, piecemeal diagnostic tools – you need

an integrated solution for managing live application performance.

Accelerate detection, diagnosis and resolution of J2EE performance

problems with Quest Central for J2EE.

Only Quest Central for J2EE provides production-ready application

management with unparalleled diagnostic depth for every expert on

the team, ensuring that your live J2EE applications continue to fire

on all cylinders.

Foglight TM PerformaSure TM JProbe®

Real world performance management for
live J2EE systems

®

© 2003 Quest Software, Inc. Quest, Quest Central, Foglight, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other products are trademarks or registered trademarks of their respective companies.

See us at JavaOne!
Silver Sponsor, Booth #1501

Detect critical J2EE

problems 24x7 –

automatically alert and

trigger diagnostics

Diagnose problems across

all tiers and components

with unique transactional

Tag and Follow technology

Resolve code-level

performance with deep,

award-winning diagnostics

toolkit

www.JavaDevelopersJournal.com

H
O

M
E

J2
E

E
J2

SE
J2

M
E

his review has, admittedly, been quite
some time coming. Had I been looking
at basic phone features, I could have
produced something months ago –
however, this magazine is not the
mobile phone–geek’s equivalent of the
Trainspotter’s Almanac (fortunately),
and we have slightly more relevant
details to discuss, such as exactly how
well the P800 performs when running
Java applications – so the review has
taken considerably more time than I
originally expected. But I’ll get on to

that in a
minute.

For the
moment,

and for
those

of
you

who haven’t already come across a
review of Sony Ericsson’s smart phone
offering, I’ll briefly run through what
the P800 offers outside of the Java
space (just in case you were hoping
you’d picked up the Phonespotter’s
Almanac, after all).

From the pictures, you might have
supposed the P800 is a large device, too
hefty to fit in a pocket, something more
like the briefcase-sized “mobiles” of the
’80s. Nothing could be further from the
truth: it weighs in at a mere 158 grams
and in terms of dimensions
(11.7x5.9x2.7 centimeters), fits quite
comfortably in the palm of your hand,
and it’s not so small that you feel as if
your hand is wrapped around it twice
(unless of course you have hands like a
proverbial Goliath).

The P800 is triband GSM (900, 1800,
and 1900 MHz), so you can use it
almost anywhere and includes infrared
and Bluetooth connectivity, just to
make it that extra bit easier to drain
those batteries on the go. The touch-
screen is 208x320 pixels, 12-bit color,
and with the flip open, seems to me

just as functional in size as any other
PDA on the market: neither too small

nor too large. The software offerngs
bundled on the phone are the

usual PDA-like features: Contacts,
Calendar (scheduling), Task list,

Jotter (for notes), Voice memo,
Calculator, Clock, Viewer (a

text reader), plus a few
games and miscellaneous

items like the picture view-
er (for photos taken

with the P800’s
built-in camera).

The messaging
application is
impressive,
integrating

SMS, MMS,
and e-

mail

into the one system, and the Internet
browser includes HTML and cHTML
support, as well as WAP/WML.

There are a couple of obvious omis-
sions in that list: there is no mini-
spreadsheet equivalent, nor is there a
cut-down word processing program.
The lack of a word processor isn’t a
major issue for me – for the moment –
as I’m still trying to locate an external
keyboard that will work with the phone.
Despite the fact that the P800’s hand-
writing recognition is, quite frankly,
classy, I have no urge to spend a huge
amount of time writing without a key-
board. However, I have occasionally
missed having something more
advanced than the simple calculator
bundled on the device.

Java support is where matters get a
whole lot more complicated.

The P800 supports Java in two
modes: J2ME (CLDC/MIDP1 support)
and PersonalJava. The J2ME side of
things is easier to get started, so I’ll talk
about this first. You can install MIDlets
either via the USB docking station, or
downloaded over the Internet using the
built-in browser. Downloading is a sim-
ple process of entering the URL to the
JAR file in the browser and waiting for it
to transfer, and then selecting “Install”
when prompted. Note that I said JAR
there, and not JAD, since I was unable
to get the P800 to install from an appli-
cation descriptor, no matter how I tilt-
ed and shook the phone.

MIDlet performance is impressive.
There were no noticeable hiccups in
simple animations (even where there
was a noticeable GC hiccup in the
emulated MIDlet running on my lap-
top), and the phone seemed able to
maintain a perfectly acceptable 20fps
when drawing 40 primitives simultane-
ously to the screen.

My one complaint regarding the
P800’s MIDP support – and I’ve men-
tioned this before, elsewhere – is that a
MIDlet will only run with the phone’s
flip keypad open. The phone operates
in two distinct ways: with the flip key-
pad closed, it works like a normal

P800
by Sony Ericsson

T

LABS

Sony Ericsson House
202 Hammersmith Road
London W67DN
PPhhoonnee:: +44(0)208 762 58 00
FFaaxx:: +44(0)208 762 58 87
WWeebb:: www.sonyericsson.com

Sony Ericsson

Reviewed by
Jason R. Briggs

jasonbriggs@sys-con.com

72 June 2003

74 June 2003 www.JavaDevelopersJournal.com

phone; with the flip open, it
operates in PDA mode.
Controlling a MIDlet (especially
games) using the touch-screen
buttons is woefully difficult –
either a process of fingers and
thumbs smearing the screen, or
trying to touch buttons rapidly
with the pen. If a MIDlet could
run in closed/normal phone
mode (which seems to me the
more logical place for a MIDlet to
appear), the user experience
would be considerably improved.
This is a design decision in which
I completely fail to see the logic.

The P800’s PersonalJava sup-
port is the reason why this review
has taken so long to deliver.
Rather than just deploying a JAR
file onto the phone in order to
run a PJava application, your JAR
must be packaged into a .SIS
installation file before it will
install. This would be fine if cre-
ating a SIS file was a simple
process; however, it’s quite
patently not. To start with, the
(Windows-only) SDK is a bloated
(and I mean bloated) 270MB+
installation, in a set of 5x51MB
and 1x16MB WinZip 8 files. If
you’re like me and spend most of
your time trapped behind a pre-
historic, nonbroadband hookup,
you’ll view the size of that install
with something akin to horror.
Installation is not straightforward
either: it took me about three or
four attempts to get the SDK
actually installed, with numerous
reboots in between.

On the subject of that
Windows-only support, this is
one of the more bizarre features
of the SDK: large chunks of it are actu-
ally Java. And parts of it are Perl…and
parts of it are native code. All packaged
up in an almost-incomprehensible
directory structure. To someone who
has been used to the simplicity of the
Java SDK, this is culture shock to the
extreme (and I realize just how lucky
we have actually been with Sun’s
efforts). In fact, had I personally been
the perpetrator of this monstrosity, I
would have, at the very least, fired
myself, but more likely taken myself
out back and administered a severe and
justly deserved beating.

Had it not been for the efforts of a
number of people on various forums
who posted their experiences (and how
to get around the problems), I would
have given up, and pretended that I

hadn’t noticed the P800 had Personal-
Java support at all.

So, after much hair pulling, I can
report that PersonalJava performance
is, on the whole, average. In terms of
animation, you might see no more than
four to six frames per second when tar-
geting the full-screen size (but perhaps
slightly higher, if you rely on the stan-
dard graphics primitives). This sluggish
graphical performance might not both-
er those of you who are developing
business-oriented applications, but it
very much depends upon the type of
application. Experience in the past sug-
gests that poor performance in the
graphics department usually indicates
a less snappy performance overall in
any GUI app.

Of course, this is not entirely unex-

pected. PersonalJava is, by now, old
technology. I would guess that many
of the Hotspot-type performance
improvements you would hope to
see in the latest VM supporting the
Personal Profile won’t have been
included in the P800’s PersonalJava
Virtual Machine. I’m crossing my
fingers that newer versions of the
Symbian UIQ operating system (the
OS powering the P800) will support
newer VMs, which is when you
might hope to see a lot more devel-
opers interested in writing larger-
scale Java applications for compati-
ble devices.

To sum up my experiences with
the P800, it has been a mixture of
both good and bad. The good is the
MIDP support, the clean, easy-to-
use user interface, and the style and
feel of the phone in general. The bad
is the SDK and the lack of Linux
support, both for connecting to the
phone via USB and for developing
more advanced Java applications
than the simpler MIDlets that you
have to package into a .SIS.

Assuming the Linux support
changes in the future, and an
upgrade comes along that updates
the phone’s Java support to MIDP 2
and the Personal Profile, the P800
would then become my perfect Java
device.

References
• A good, detailed review of the

P800: www.infosyncworld.com/
reviews/n/3067.html

• If you’re stuck with the SDK, this is
a good place to look: www.my-
symbian.com/forum/

LABS

PPrrooss
• Excellent MIDP 1.0 support. There is a

possibility of MIDP 2 with a later version of
the Symbian UIQ OS.

• A comprehensive set of features, both soft-
ware, hardware, and especially connectivity.

CCoonnss
• Lack of Linux support both for connecting to

the phone and developing applications using
the SDK.

• A bloated, virtually crippled SDK with incom-
plete and sometimes incorrect documenta-
tion.

• PersonalJava performance is just average.
Acceptable for business applications, but if
you were hoping to write multimedia games
for the device, you’ll be struggling.

Snapshot

H
O

M
E

J2
E

E
J2

SE
J2

M
E

here’s a a carefully understated saying,
attributed to the ancient Chinese: “May
you live in interesting times.” While at
first glance living in interesting times
might have been construed as a bless-
ing, we who live in the present times
know that interesting can be a curse.
We’ve taken complexity to a new order
of magnitude. It’s hard to know what,
exactly, we should be interested in. In
these interesting times of information
overload, it’s often difficult to separate
the wheat from the chaff.

Those of us in the business of com-
puters know something that isn’t
always obvious to the layman, although
a layman can often sense it. Our com-
puters have not worked as advertised to
reduce complexity in our lives, but in
many ways have actually increased it. If
your TV was as complicated to operate
as your PC, you would have traded it in
for a radio years ago. If you think about
it for more than a couple of minutes,
it’s fairly obvious that this can’t go on.
We can’t really afford to have every
man, woman, and child on the planet
become a computer technician. There’s
more to life than feeding the machines.
If you feed a machine it will still be
hungry tomorrow, but if you teach a
machine how to feed itself, it can
become autonomous. Autonomic com-
puting has become a necessity.

GIGO
One of the reasons that computers

haven’t helped much in dealing with
complexity is the simple fact that they
do whatever they are programmed to
do, and they are programmed by us.
Anyone who’s taken Computer Science
101 is familiar with the garbage in
garbage out phenomenon. Although
computers are much faster at certain
kinds of serial processing tasks, like
arithmetic, that can readily and clearly
be expressed, the human brain is still
far superior at handling complexity.
While genes certainly play an impor-
tant part in the programming of the
human brain, it could be said that the
human brain programs itself. In other
words, it learns.

The modern French have another
saying: “Vive la difference.” This saying

assumes, naturally, that you can tell the
difference well enough to enjoy it. In
our interesting times, this isn’t always
easy. Perhaps it never was, for though
the ancient Chinese had the concepts
of yang and yin to denote the male and
female principles underlying reality, the
reality of the Tao as embodied in the
famous symbol merges the two as they
transition from one into the other. So it
may not have been all that easy in the
old days either.

If we often have trouble telling the
difference, how can we expect a com-
puter to do so? Computers are notori-
ous for their poor tolerance of ambigui-
ty. For example, we as humans don’t
have much trouble telling the differ-
ence between a male name and a
female name, as long as the male or
female name is one that we have
learned as we’ve assimilated the other
artifacts of our culture. Few humans
from an English-speaking culture
would deny that my wife’s name,
Eleanor, is female while my name,
Michael, is male (I think there once was
an actress named Michael, but I never
could quite understand how – perhaps
that was her intent).

A computer, on the other hand,
would not “know” that Michael is a
male name or Eleanor a female name
unless the names were stored in a table
of some kind. Indeed, that is precisely
what we often do to “teach” a computer
what it needs to “know.” This is also
precisely why computers are notorious-
ly poor at tolerating ambiguity. If the
foremost neurologists were to look
inside my brain, or for that matter your
brain, they would be hard pressed to
locate where the table of cross refer-
ences, from name to gender, is located.
In fact, the very best of them could not
locate it because it doesn’t exist.

Electronic Brain
You don’t have to be a brain surgeon

to know that what does exist, in my
brain and yours, are about two and a
half pounds of tissue composed of neu-
rons, axons, ganglia, and synapses.
These countless cells combine in net-
works of networks of neurons of
unimaginable (even when using the

imaginations that they make possible)
depth and breadth. Nature has built
with a couple of pounds of meat a mas-
sively parallel computer of unparalleled
proportion, unrivaled even by acres of
silicon and metal ones. It is only a
slight exaggeration to say, then, that
our table of name-gender associations
is stored everywhere and at the same
time nowhere in our brains.

There is a downside to this kind of
approach, of course. Learning takes
time. Unlike a computer, a database in
my brain cannot simply be loaded with
a set of name-gender associations. My
brain must be repeatedly exposed to
these associations, often over many
years, and with many mistakes to firm-
ly establish names that are male and
names that are female. For a number of
reasons, making mistakes is an impor-
tant part of the learning process
(Thomas Edison didn’t think in terms
of mistakes – he said he’d learned 5,000
ways how not to make a light bulb).

There is also a very bright side to
this approach, which completely offsets
the downside. Unlike computers, our
brains are remarkably tolerant of ambi-
guity. Once the pattern of associations
is established, our brains are exquisitely
sensitive to the proximity of a partial
pattern to the whole. You will not hesi-
tate, for example, to recognize this
name:

Micha_l

Most computer programs (those not
employing the algorithms we’re about
to discuss) would not get a hit in the
table of associations (even though 86%
of the name is recognizable), and hence
would fail to recognize it as a male
name. The neural networks in our
brains are quite resilient to noise, and
can discern patterns even in informa-
tion that has been heavily distorted.

Likewise, a neural network comput-
er program can be used to recognize
objects (classification) and trends (pre-
diction) with considerable accuracy, as
it uses a similar approach to pattern
learning and recognition as that found
in nature (see “Parallel Distributed
Processing” in the reference section).

Sex Machine Bean
A Java neural network built on ABLE

Mike Fichtelman

T

ARTIFICIAL INTELLIGENCE

J2
SE

H
O

M
E

J2
E

E
J2

M
E

76 June 2003 www.JavaDevelopersJournal.com

Linux solutions that reduce IT complexity,

increase agility, and deliver security all

backed by 24x7 HP support services.

Whatever your IT needs and size, HP has

a Linux solution customized to your needs.

the Linux solution for all sizes the Linux solution for all sizes

Linux —
powering the growth

of your business.

Call 1-888-hplinux
to speak with an HP Linux specialist

now, or visit www.hp.com/linux.

78 June 2003 www.JavaDevelopersJournal.com

Agent Building and
Learning Environment

The Agent Building and Learning
Environment, or ABLE, is a complete
environment for designing, testing, and
implementing Java-based artificial
intelligence agents. The ABLE frame-
work was developed by researchers at
IBM’s T.J. Watson Research Center. In
terms of artificial intelligence features
supported, ABLE covers the waterfront,
and you would be hard pressed to think
of an artificial intelligence paradigm
that it does not employ. It is an AI tour
de force.

Each paradigm is implemented as a
JavaBean, and the collected beans are
called AbleBeans. While this article
focuses only on a single paradigm, that
of neural network classification, there
are many others, including Temporal
Difference Learning, Naïve Bayes, and
Radial Basis Function.

In addition to these artificial intelli-
gence paradigms, ABLE provides agent
beans for buyer/seller conversation
logic, and for developing agents to
automatically tune (autotune) comput-
er systems and networks. There’s also a
complete ABLE Ruleset Language (ARL)
for incorporating expert system para-
digms, such as forward and backward
chaining and predicate and fuzzy logic,
into an application.

In the spirit of the best IDEs, ABLE
enables you to incorporate intelligent
agents into your applications without
necessarily being an expert in AI. ABLE
allows you to focus on what you want
to do and not on how it is done.

The first step is to download ABLE
from the IBM alphaWorks Web site
(www.alphaworks.ibm.com/tech/able)
. The Web site not only contains the
distributions for Windows and Linux,
but it has a lot of information about
ABLE, including a moderated news
group.

There are currently five downloads
available, but the two related to Linux
are in tar/gzip format. One tar file con-
tains the executable and the other con-
tains the help and Javadoc files. Even if
space is an issue, I would recommend
installing both, since the help files con-
tain a lot of valuable information relat-
ed to installation and use, as well as a
complete tutorial. One important con-
sideration (but apparently often over-
looked – and not just by me, if the
newsgroup threads are an indicator) is
that you must be sure to have Java2
v1.3 installed on your system (and this
is true whether you use Linux or
Windows).

Simply untar the compressed file to
a target directory (for example, able)
and the ABLE files and documentation
will be stored appropriately in a direc-
tory tree below it. This will also create a
couple of preferences files. Next,
change directories to go to the
..\able1_4_0\bin directory. You will find
several shell scripts there. You can exe-
cute either runnit.sh or runjas.sh (ABLE
Java Agent Services) to start the ABLE
Editor. These scripts make the startup
of the ABLE Editor very simple, since all
the classpath and JAR information is
already provided. Before you start
either of these scripts, however, you
must ensure that you’ve either already
set a JAVA_HOME environment vari-
able to the location of Java2 v1.3, or you
will need to set it within the script by
editing it. If all goes as it should, you
will see the ABLE Editor displayed
before you.

The ABLE Editor is a full featured
IDE (written in Java) that can be used
to design, test, and debug intelligent
agents. It’s extremely easy to use, and it
takes much of the work out of this
process. Before going much further,
however, it would probably be a good
idea to validate that everything is fully
functional at this point. A simple way
to do that is to open and run the
Animal neural network classification
example provided with ABLE. This sim-
ple example completely exercises the
features of ABLE and is based on the
old familiar Prolog animal classifica-
tion problem. For those who don’t
remember, the problem is to classify
various animals (panther, zebra, etc.)
based on their various characteristics
(four legs, stripes, etc.). From the drop-
down menu, select File, then Open
Agent, then navigate to the neural
directory and select animal.ser. This
will load the Animal
NeuralClassifierAgent bean, which is
comprised of Import, TestImport,
InFilter, OutFilter, and
BackPropagation components. There
are also Inspectors associated with the
Infilter, Outfilter, and BackPropagation
components. I’ll explain each of these
in a moment, but for now you can sim-
ply validate that they have loaded and
displayed properly. If they have, you
can hit the Run button (circle of
arrows) on the ABLE Editor top panel.
This will start the training or testing of
the neural network. If you cannot get
this far, you’ll need to do a bit of
research to identify the problem.

Based on my experience, I can tell
you that the likelihood of an ABLE

problem is small at this point. More
likely there’s either a Java or a Linux
problem. Problems related to Java
might include version, location, and
font properties. Linux problems could
be similar, and include things like reso-
lution settings and file locations. If you
run into a situation where ABLE won’t
start or the components won’t load or
execute properly, it’s likely something
in your environment needs to be con-
figured appropriately. A good resource
is the newsgroup mentioned earlier, at
the ABLE alphaWorks site. Once valida-
tion is complete and you’re confident
that ABLE is working as it should, you
can proceed to design your own intelli-
gent agents.

Sex, Machines, and JavaBeans
The SexMachineBean agent I’m

about to describe is based on the neu-
ral network classification paradigm.
(The source code for this article can be
downloaded from www.sys-
con.com/java/sourcec.cfm.) As I said
earlier, this agent can be used to dis-
criminate between male and female
names. By definition, a key element of
neural network classification is the rep-
resentation of the data. Since the neu-
ral network will be learning patterns in
the data, it’s extremely important to
represent it appropriately. There are
two parts to representing data to ABLE.
The first is a file (which could be a DB)
containing the data itself; the second is
the data definition file. In the case of
SexMachineBean, the data file contains
records that look like this:

A v r i e l x x x x x x female

A v r i l x x x x x x x female

A y d e e x x x x x x x female

A y d r i a x x x x x x female

A z a l e e x x x x x x female

A z e m i n a x x x x x female

A z i a x x x x x x x x female

A z i l e e x x x x x x female

A z u c e n a x x x x x female

A z z o l i n a x x x x female

A a r o n x x x x x x x male

A b a r a m x x x x x x male

A b b e x x x x x x x x male

A b b o t t x x x x x x male

A b d e l x x x x x x x male

A b d i x x x x x x x x male

A b d o o l x x x x x x male

A b d u l x x x x x x x male

A b d u l l a x x x x x male

The data files, by convention, have
suffixes of dat. The data definition file
(which has a suffix of dfn) for this data
looks like this:

ARTIFICIAL INTELLIGENCE
J2

SE
H

O
M

E
J2

E
E

J2
M

E

80 June 2003 www.JavaDevelopersJournal.com

name1 categorical input

name2 categorical input

name3 categorical input

name4 categorical input

name5 categorical input

name6 categorical input

name7 categorical input

name8 categorical input

name9 categorical input

name10 categorical input

name11 categorical input

name12 categorical input

gender categorical output

From the data definition file, you can
see that there are 13 fields defined for
each record or name/gender pair. This is
simply because the longest name was 12
characters, and the gender field brings
the total to 13. Since not every name
occupied 12 characters, it was necessary
to pad the names that didn’t (I simply
used the character x, but an underscore
would have done just as well).

It’s also important to create both
training and test files. This can be as sim-
ple as creating two sets of data and defi-
nition files. In the case of
SexMachineBean, the files are named
smb.dat and smb.dfn for training, and
smbTest.dat and smbTest.dfn for testing.
These should be stored in the exam-
ples/datafiles directory. I’ll explain how
these are used in a moment, but first, go
to the ABLE Editor and from the drop-
down menu select File, then New, then
Default(com.ibm.able.agents.Able-
DefaultAgent).

This, by the way, is the default upon
opening the ABLE Editor; so if you’ve
just opened the ABLE Editor, you don’t
need to perform these steps.

Next, go to the Agents tab and you’ll
see a number of icons. One of these looks
like a vertical sorting bin, with two arrows
pointing to separate slots in the bin. If
you let your mouse hover over this icon,
the descriptor AbleNeuralClassifierAgent
will be displayed. Push this button, and a
neural classifier agent will be added to
the workspace. It will appear gray, since it
has not yet been configured and there-
fore is disabled.

Then, highlight the NeuralClassifier-
Agent in the left pane of the workspace.
To configure the new agent, simply
right-click the mouse on the
NeuralClassifierAgent. Select Properties
from the list that will be displayed.
You’ll be presented with four tabs:
General, Neural Classifier, Connections,
and Functions. Select the Neural
Classifier tab. The others can be
ignored for the time being. For the
Training File Name, click on the Browse

button, navigate to the examples/
datafiles directory, and select smb.dfn.
Do the same for the Test File Name, but
select smbTest.dfn. Then, under
Hidden1, enter a value of 10. This will
create 10 hidden units on the first
intermediate network layer. This can
vary depending on the application, and
may require some amount of experi-
mentation for optimal training. This
number of hidden units is adequate for
training the network to recognize all
female and male names beginning with
the letter A. Finally, click the Generate
Beans button, then click OK.

You’ll notice that the ABLE Editor
will have generated an Import bean, a
TestImport bean, an InFilter bean, a
BackPropagation bean, and an OutFilter
bean. You’ll also notice in the GUI panel
on the right that the beans are appropri-
ately connected as well. You can open
the properties for each of these beans
and review the information displayed to
get a better understanding of the ABLE
environment. Notice that both the
Import and TestImport beans are con-
nected to the InFilter bean, but that only
one connection is enabled. This is
because during the training of the neu-
ral network, the ABLE Editor will alter-
nate between testing and training in
order to validate what has been learned.

To view the progress of the training
process, the ABLE Editor provides a
facility for creating Inspectors. Creating
an inspector for a bean is as simple as
everything else in the ABLE Editor. To
create Inspectors for the InFilter and
OutFilter beans, highlight each one in
turn, right-click, then select Inspect.
Two new windows will open, and the
values for each filter will be displayed in
the corresponding window. The inspec-
tor for the BackPropagation bean is cre-
ated the same way, except that in this
case certain parameters should be
selected – at least, I selected the follow-
ing parameters that I found the most
informative on training progress:
percentCorrect, percentIncorrect,
percentUnknown, netEpoch, and
netArchitecture. Naturally, under opti-
mal circumstances, percentCorrect
should rise to 100, while percent-
Incorrect and percentUnknown fall to
zero. If that doesn’t happen, it will be a
clear indication that you’ve either got a
problem with data representation or
with the neural network architecture
you’ve defined. The amount of data is
also a factor in training. For example, if
you have a relatively small amount of
data, but the neural network never
trains or oscillates, you may want to

increase the number of hidden units
used. Setting the network architecture is
somewhat of an art, but there are many
references available on the subject. The
netEpoch parameter displays the num-
ber of passes of the training set, while
the netArchitecture parameter displays
the defined number of input, hidden,
and output units. For any inspector, the
parameters to be displayed are selected
by choosing Data, then Parameters
from the dropdown menu.

Learning About the Birds
and the Bees

That’s basically all there is to the con-
figuration of SexMachineBean. To start
training, simply highlight the
NeuralClassifierAgent in the left pane of
the workspace once more, then right-click
the mouse on the NeuralClassifierAgent
and select Properties from the list that will
be displayed. Select the Neural Classifier
tab. Press the Start button to begin train-
ing the neural network. Training will con-
tinue until one of three things happens:
the minimum percent correct reaches the
threshold you’ve set; the maximum num-
ber of passes reaches the threshold you’ve
set; or you hit the Stop button. It’s difficult
to predict the training time required,
since it will vary based on the data, the
neural network architecture, and the
speed of the machine. The relatively mod-
est training set provided here should not
take very long, so please be patient.

Once you have a trained neural net-
work, you can save the neural network
state in serialized form. This is true for
all ABLE agents, not just for neural net-
works. To me, this is one of the most
significant and valuable contributions
of ABLE. ABLE allows you to simply
store and reuse in your application
whatever has been learned. After all, the
ease of use provided by ABLE in design-
ing and building a neural network
would be somewhat academic if you
couldn’t take it any further. Since ABLE
allows you to store a trained neural net-
work in Java serialized form, these
objects can be re-created anywhere that
a JVM will run. Obviously, this provides
the intelligent agents created with ABLE
a high degree of mobility and versatility.
To store an agent in serialized form,
simply click File from the dropdown
menu. You’ll notice that below File are
selections for Save and for Export. It is
recommended that, when the agent is
finished and set to be used in your
application, the Export alternative
should be used. At this point, just

Mike Fichtelman is a certified
senior project manager at IBM
supporting their Web hosting

business. He has over 20 years’
experience in the information

technology field as a developer,
designer, and project manager.
Mike has an MBA from Hofstra

University and his work has been
published in a number of

journals on subjects ranging
from infrastructure to the

development of wireless
applications using Java, XML,
and WAP. He also teaches an
e-business course in the MBA
program at the University of

Phoenix

mikef@optonline.net

ARTIFICIAL INTELLIGENCE
J2

SE
H

O
M

E
J2

E
E

J2
M

E

– continued on page 92

82 June 2003 www.JavaDevelopersJournal.com

work with a lot of J2EE development
tools. While some feel like solutions
looking for a problem, every once in a
while I run into one that feels like it
was inspired by a developer’s frustra-
tion at not being able to work quickly
and effectively. Ensemble Glider from
Ensemble Systems is that sort of tool.

What Is Glider?
Glider is an integrated development

toolkit that accelerates J2EE develop-
ment. It allows you to interactively cre-
ate, build, and debug J2EE components
before deploying to a server. Glider
compresses the development cycle
required to build and test EJBs and JSPs.

J2EE developers have to endure a
fair amount of monkey motion in order
to build and test J2EE components.
Instead of having to endure a full cycle
of code, compile, package, and deploy
before debugging, Glider accelerates
development by compressing that cycle
into an interactive seamless coding and
debugging session. It integrates with
the Java compiler and debugger, and
simulates a full-blown J2EE server,
eliminating the need to package and
deploy for testing.

Intermediate to advanced develop-
ers will get the most benefit from
Glider. The tool doesn’t provide exten-
sive help for someone just learning
about EJB development – you do need

to have a moderate amount of knowl-
edge to be productive. It’s fast and
lightweight, and stays out of your way
so you can get some real work done.

Getting Started
There are versions of Glider for the

Eclipse shell, for Rational/IBM Rose
and Rational/IBM XDE UML modelers,
and a standalone version. My testing
was done with the standalone version.

Installation is simple. It’s distributed
as a compressed file that you decom-
press into a target directory. Not having
a minor installation program to create
a launch menu was a minor inconven-
ience. Glider is started by launching the
executable in the bin subdirectory. It
automatically found my Java runtime
and configured itself – I didn’t have to
do anything else for configuration.

If you are using the Java 1.4 runtime,
make sure you have a recent 1.4.1
build. I encountered problems with
earlier 1.4 JREs, but Ensemble’s techni-
cal support cheerfully pointed me in
the right direction.

Running Glider
I was pleasantly surprised at how

quickly Glider starts up. Its user inter-
face is simple and intuitive. I started by
creating a Glider project – a workspace
that holds EJB modules and Web appli-
cations. Once created, you can create

new J2EE components, or
add existing components.

The project workspace
provides a project browser
with tabs for viewing and
navigating the project by its
directory structure, package
structure, EJB components,
and Web components. This
browser is the primary
means of navigation.

Online help is available
from the main menu bar.
It’s HTML based and, by
default, directs your brows-
er to the Ensemble Systems
Web site. I downloaded the
help files and configured
the options to use them.

Working with JSPs
You can create JSPs and associated

Web components from the context
menu of the Project Browser’s Web tab.
The new file is populated with a skele-
ton JSP. This skeleton is one of several
templates provided with Glider. You can
easily add your own templates or cus-
tomize the stock templates provided.

Glider doesn’t provide a lot of bells
and whistles for JSP editing. I used the
template mechanism to create a library
of JSP tags, which would have been
nice as supplied templates.

You can run your JSPs using the
built-in server. Glider compiles the JSP,
starts it up, and launches your Web
browser.

Overall, I found Glider’s editor a bit
thin for HTML and JSP development,
but Glider mindfully watches for
changes made by an external source so
you can use it with your favorite editor.

Working with EJBs
Like JSPs, EJBs are created from the

context menu of the project browser.
Glider generates the descriptor, imple-
mentation, home, and interface source
for the bean. Glider has built-in tools to
keep the interface, implementation,
and bean descriptor in sync as you
work. You can also flesh out the bean
by editing the descriptor directly –
Glider will update the source code from
the descriptor.

Some other nice touches: the editor

Ensemble Glider
by Ensemble Systems

I

LABS

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Suite 280-5200 Hollybridge Way
Richmond, BC
V7C 4N3 Canada
PPhhoonnee:: 877.290.2662
WWeebb:: www.ensemble-systems.com

PPllaattffoorrmmss:: JDK 1.3.1 and JDK 1.4 (with Hot Swap
support), Windows NT 4.x, Windows 2000
Professional SP2, Windows XP, Unix, Linux.
Supports EJB 1.1 and EJB 2.0, JSP 1.2, Servlet 2.3
specifications
PPrriicciinngg::$199 introductory price until July 15 2003,
$499 after July 15.

2.1GHz desktop, 256MB RAM, 40GB disk,
Windows XP SP1

Ensemble Systems Inc.

Specifications

Test Platform

Reviewed by
Ron Phillips

Figure 1 Glider’s IDE’s built-in debugger – continued on page 86

Sponsored by Produced by

Innovation
Everywhere
One Platform.
One Conference.
Be a part of the dynamic conference that brings

the excellence of the JavaTM platform to you.

Come together with fellow developers from

around the globe at the eighth annual

JavaOneSM conference. Take advantage of the in-

depth technical training that provides you with

the innovative tools and solutions, while all

new Hands-on Labs gives you the opportunity to

test drive different technologies. This June,

immerse yourself in the unparalleled JavaOne

conference experience.

Register before June 8, 2003, and save $100 off the on-site

price of $1,995. Be sure to use Registration Code XXMG-333.

Copyright © 2003 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun

logo, Java, the Java Coffee Cup logo, JavaOne, the JavaOne logo, Java Developer Conference, Java

Community Process, Java 2, EmbeddedJava, PersonalJava, 100% Pure Java, J2EE, J2ME, J2SE, Jini,

Jiro, Solaris, Write Once, Run Anywhere, and all Java-based marks and logos are trademarks or reg-

istered trademarks of Sun Microsystems, Inc. in the United States and other countries.

The JavaOneSM

Conference—Everywhere
Starts Here

Register before June 8, 2003, and Save $100!

June 10–13, 2003
Pavilion | June 10–12, 2003

Moscone Center | San Francisco, CA

java.sun.com/javaone/sf

84 June 2003 www.JavaDevelopersJournal.com

ecently, I had the opportunity to work
with the latest version of Object-
Venture’s J2EE development tool:
ObjectAssembler. ObjectVenture pro-
motes ObjectAssembler 2.5 as a “smart”
development tool that simplifies and
accelerates J2EE development. This is a
popular claim among Java tools, so I
decided to put it to the test. My experi-
ence showed that ObjectAssembler
lives up to the challenge.

Features
ObjectVenture offers two versions of

their tool: Professional and Enterprise. I
reviewed the full-featured Enterprise
edition. ObjectAssembler Enterprise
casts a broad net, offering the following
features:
• Visual representation and manage-

ment of J2EE components (EJBs,

JSPs, etc.) in the IDE, and real-time
synchronization with code

• Visual Support for Struts, including
full Tiles and Validator functionality

• Support for a language for defining
and adhering to design patterns,
known as Pattern Component
Markup Language (PCML)

• Integration with JBuilder, Sun ONE
Studio, and NetBeans

• Deployment to most J2EE applica-
tion servers

Getting Started
ObjectAssembler Enterprise is avail-

able as a standalone environment or as
a plug-in for Borland’s JBuilder, Sun
ONE Studio, or NetBeans. I down-
loaded the standalone evaluation ver-
sion of ObjectAssember 2.5.2, which is
built atop the NetBeans IDE core. After
downloading and completing the
InstallAnywhere installation, I was up
and running without incident in about
three minutes. Just be sure you use a
JDK that’s 1.4 or higher.

One of the tool’s most touted abili-
ties is its visual “component” approach
to J2EE development. To experience
this, I created a very simple J2EE appli-
cation containing a JSP, servlet, and
session EJB that would reverse a string.

Component Workspace
ObjectAssembler’s interface consists

of three visual “workspaces.” I spent
most of my development time in
ObjectAssembler’s Component Work-
space, where J2EE components can be
visually created, modified, and main-
tained.

ObjectAssembler supports many
components, which are created through
a simple wizard. The components are
broken up into several categories:
• Struts: Action, Plugin, ActionForm,

DynaActionForm
• Web: JSP, lifecycle event, servlet, filter
• EJB: Entity bean, session bean, mes-

sage-driven bean
• General: Interface, JavaBean, value

object

I started by creating my servlet.
Once I walked through the wizard, I

noticed an example of Object-
Assembler’s so-called “IntelliSynch”
functionality that warned: “Servlet
should implement a doPost or doGet”
(see Figure 1). This warning seemed to
go beyond enforcing interface adher-
ence by offering general development
tips. I found that the tool’s tips and
warnings do a good job (especially with
novice developers) of finding silly
errors. Beyond just identifying a prob-
lem, I was typically able to right-click
on the warnings to implement a sug-
gested fix with one-click.

While creating my JSP, the tool
offered menus for adding directives,
scriptlets, expressions, and tags. In
addition to support for standard JSP
tags, the tool allows importing of cus-
tom tag libraries and then enforces
required attributes and tags. I couldn’t
help being impressed by how much
easier JSP development could be with
ObjectAssembler.

Last, I created a session bean using
the EJB wizard (see Figure 2). In addi-
tion to wizards, the tool offers the abili-
ty to import and maintain existing
components. This was reassuring to
me, indicating that ObjectAssember
doesn’t use proprietary repositories to
maintain applications. To give Intelli-
Synch another test, I wrote the bean’s
method by hand, and, true to form, the
tool visually added the method to the
component in its Detail View.

Assembly Workspace
With the components for my simple

application complete, I checked out the
Assembly Workspace. The interface
offered clean organization of my com-
ponents, archives, and configuration
files, with the ability to edit any item
within the tool.

ObjectAssembler 2.5
Enterprise Edition by ObjectVenture, Inc.

R

LABS

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Suite D208
2 Shaker Rd.
Shirley, MA 01464
PPhhoonnee:: 978.425.9654
WWeebb:: www.objectventure.com
EE--mmaaiill:: info@objectventure.com

PPllaattffoorrmmss:: Any platform with JDK 1.3.x support.
Plugs into JBuilder, NetBeans, and Sun ONE
studio or standalone
PPrriicciinngg:: Enterprise $1,999; Professional $499 (no
pattern support)

ObjectVenture, Inc.

Specifications

Reviewed by
Adam Chace

Figure 1 Component workspace

Figure 2 Editing an EJB

Rational User Conference 2003

Join us for the Rational User Conference 2003, where we will help you make the leap from Ideas to

Results! With 14 tracks for every member for the software development team, we'll provide all the

technical insight and practical knowledge you need to leverage Rational's comprehensive set of

development tools and services. Plus, we have an exciting line up of keynote speakers, Hands-on

workshops, birds-of-a-feather sessions, and other networking opportunities.

IB
M

 is a tradem
ark of International B

usiness M
achines C

orporation in the U
nited States, other countries, or both. R

ational is a tradem
ark or registered tradem

arks of R
ational Softw

are
C

orporation in the U
nited States, other countries or both. ©

 C
opyrightIB

M
, 2003. A

ll rights reserved. M
ade in the U

.S.A
.

ideas resultsF R O M T O

August 24-28, 2003

Gaylord Palms Resort and Convention Center

Orlando, Florida

Register Early and Save!

For more information or to register visit www.rational.com/ruc

provides syntax coloring for the Java
code, and has pop-up code helpers for
automatic code completion. The code
templates automate commonly used
coding constructs, and the visual editor
for setting up container-managed rela-
tionships is simple and easy to use.

When you’re ready to start testing
your EJB, Glider will generate a test
client for you. From the test client code,
simply add the code to instantiate your
EJB from the bean home.

XDoclet Support
Glider supports XDoclet, which sig-

nificantly simplifies EJBs. When you
create your EJB, specify that you’ll be
using XDoclet. All coding for an EJB is
then done in the bean implementation
file, and the interface and home are
generated from XDoclet tags embedded
in your Javadoc comments when you
build. This eliminates redundant, error-
prone work and keeps the implementa-
tion, home, and interface in sync.

Support for XDoclet in the editor is
great – the context menu provides
options to create the tags for you. You can
easily create an EJB, add methods and

CMP features, or generate a test client
and have it running in just a few minutes.

Debugging
Debugging is where Glider really

shines – you can edit and debug incre-
mentally without any deployment
effort. Testing an EJB with a generated
test client couldn’t be easier – just run
the test client from within Glider. Glider
will build the application and start the
debugger. I was impressed with the rich
debugging capabilities that Glider pro-
vides. You can create simple and condi-
tional breakpoints, trace into JSP code,
debug locally or remotely, inspect
loaded EJBs with the integrated brows-
er, and even save and preload the con-
tainer’s loaded beans for testing specific
scenarios (see Figure 1).

Summary
Glider simulates a J2EE server with

remarkable completeness. For develop-
ing and debugging J2EE applications,
it’s hard to beat the speed and conven-
ience of this lightweight environment.
The compressed code/test cycle
encourages experimentation and cre-
ativity. The standalone version’s editor
is basic but sufficient, and the environ-

ment works well in concert with exter-
nal editors and other tools. If you are
using Rational/IBM’s XDE or Rose, or
eclipse.org’s Eclipse shell, you should
check out those versions.

At a list price of $499, Glider is a
serious value for anyone doing J2EE
development. At the introductory price
of $199, this is a no-brainer. See
www.ensemble-systems.com/glider for
more information.

86 June 2003 www.JavaDevelopersJournal.com

To deploy, I right-clicked on the
enterprise application and selected
Generate EAR. ObjectAssembler com-
piled the necessary classes and packed
up the EAR. The tool contains a “deploy-
ment versioning” feature that preserves
application server–specific deployment
descriptors from previous archives, and
allows you to go back into the tool and
make changes to your code without hav-
ing to re-create the descriptors.

Patterns Workspace
A compelling feature of

ObjectAssembler Enterprise is its ambi-
tious support of software patterns,
which allows you to capture designs
and best practices for software devel-
opment.

Traditionally, patterns have been
described informally or as UML.
ObjectVenture has developed an XML-
based language to represent patterns.
PCML, which ObjectVenture is working
to standardize, allows patterns to be
exchanged, modified, or extended in a
human and machine-readable format.
ObjectAssembler 2.5 Enterprise Edition
ships with a version of Sun’s Java Center
Patterns Catalog represented in PCML.

The impressive part of Object-
Assembler’s pattern support is that not

only can you easily create and modify
patterns, but the tool actually tracks pat-
terns after they are applied and can
enforce them during development. If
part of the pattern is not complete or the
source code is modified and breaks the
pattern, the tool informs the developer
and assists in correcting the problem. I
immediately thought of the potential; it’s
like having an architect looking over the
developer’s shoulder, keeping the project
in sync with the original design.

Minor Issues
Overall, I had a very positive experi-

ence with ObjectAssembler. Like any
tool, however, it’s not without prob-
lems. The documentation is not very
comprehensive and I wanted more
examples. ObjectAssembler’s user man-
ual is adequate, but the online help was
somewhat thin.

Another minor flaw is that Object-
Assembler’s integrated application
server support is currently limited to
WebLogic, JBoss, and Tomcat.
ObjectAssembler does generate a J2EE-
compliant archive that can be deployed
to any J2EE-compliant application
server. ObjectVenture indicated they
would have additional application serv-
er integration available shortly.

Summary
In total, I was impressed with

ObjectAssembler. I see its visual J2EE
component and Struts development
features as particularly useful for
coaching development and reducing
errors. The pattern support and the
introduction of PCML show promise
for enforcing design decisions through-
out development, in particular on larg-
er teams.

It’s not often that a development
tool lives up to its claims of being help-
ful yet unobtrusive. ObjectVenture’s
ObjectAssembler seems to meet these
qualities and is well worth a look.

LABS
J2

SE
H

O
M

E
J2

E
E

J2
M

E

TTaarrggeett AAuuddiieennccee:: J2EE developers
LLeevveell:: Beginner to advanced
PPrrooss::
• Fast, visual J2EE component building with

lots of coaching, tips, and guidance
• Strong Struts support
• Ambitious support for creating, distributing,

and enforcing software patterns
CCoonnss::
• At present: a small user community
• So-so online documentation
• Limited built-in app server integration

Snapshot

TTaarrggeett AAuuddiieennccee:: J2EE developers
LLeevveell:: Intermediate to advanced
PPrrooss::
• Fast and efficient tool for developing,

debugging, and testing J2EE components
(JSPs, servlets, EJBs)

• Full support for EJB2.0 including CMP, CMR,
message-driven beans

• Good debugging tools
• XDoclet integration
• Works well with external editors and tools
CCoonnss::
• Editor in standalone version could be more

complete
• An installer could make installation and

setup a little more convenient

Snapshot

– continued from page 82

Ron Phillips is vice president
of software development at

Serlio Software
(www.serliosoft.com) in

Milwaukee, WI.
Serlio provides

mentoring and consulting to
large and mid-sized

companies adopting software
best practices into their

development organizations.
Ron has been designing and

developing commercial
software development tools

for over 12 years and has
coauthored several books

and articles on
Java technologies.

rkp@serliosoft.com

Ensemble Glider

Adam Chace is
president of Chalk
Creek Software, a

J2EE consultancy in
the U.S., and the

coauthor of JSP Tag
Libraries from

Manning Press.

adam@
chalkcreek.com

88 June 2003 www.JavaDevelopersJournal.com

he editors of Java Developer’s Journal are in a unique position when it comes to Java
development. All are active coders in their “day jobs,” and they have the good fortune
to getting a heads up on many of the latest and greatest software releases. They were
asked to nominate three products from the last 12 months that they felt had not only
made a major impact on their own development, but also on the Java community as a
whole.

The following is a list of each editor’s selections and the reason why they chose
that product.

JDJ Editors’
Choice Awards T

AWARDS

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Alan Williamson

Editor-in-Chief

LLIISSAA ffrroomm iiTTKKOO CCoorrppoorraattiioonn

LISA is a tool for develop-

ing and staging Web and XML-

based regression and load tests.

www.itko.com/lisa

“This is a truly beautiful

piece of software that fits snug-

gly into anyone’s testing envi-

ronment. The ability to simply

record and playback test results

was the easiest thing I have

seen in a long time.”

TThhiinnlleettss

Thinlets is a GUI toolkit, a

single Java class that parses the

hierarchy and properties of the

GUI, handles user interaction,

and calls business logic.

http://sourceforge.net/proj-

ects/thinlet

“This framework proves

that there is life in AWT after

all. If only AWT could have pro-

vided this from the start, then

Flash may not have gotten the

foothold on the browser that it

did.”

jjEEddiitt

jEdit is a cross-platform pro-

grammer’s text editor written in

Java, and developed by Slava

Pestov and others. jEdit is

released under the terms of the

GNU General Public License.

www.jedit.org

“The plugin architecture

alone wins my vote, even beat-

ing Eclipse’s. To say this is just a

text editor for code is definitely

underselling this wonderful

example of software engineer-

ing.”

Jason Bell

J2SE Editor

EEcclliippssee

The Eclipse Platform is

designed for building integrated

development environments

(IDEs) that can be used to create

applications as diverse as Web

sites, embedded Java programs,

C++ programs, and Enterprise

JavaBeans.

www.eclipse.org/

“After being anti-IDE for so

long I’ve finally caved in. It has

nice CVS utils, project frame-

works, code refactoring, and

‘sensible’ code generation

(especially for beans). Add

industry backing and a very

fired up user base and you have

one winning product.”

OOrriioonn AApppplliiccaattiioonn SSeerrvveerr

The Orion Application

Server provides your application

with a foundation that is robust,

scalable, and easy to develop

with.

www.orionserver.com

“Any J2EE-compliant server

where the installation is “java -

jar orion.jar -install” gets my

vote any day. More fiddly than

Tomcat but much faster.”

TThhiinnkkiinngg IInn JJaavvaa ((33rrdd EEddiittiioonn))

by Bruce Eckel. Prentice Hall

PTR, 2002.

“I’ve lost count how many

times I’ve advised people to get

hold of this book, whether by

download or in print. I still sug-

gest print as it very rarely leaves

my side for those all important

core Java tips.”

Joe Ottinger

J2EE Editor

IIDDEEAA ffrroomm IInntteelllliiJJ

IDEA is a Java IDE. Its devel-

opment features includes indus-

try setting refactoring support,

and intelligent code editing

assistance.

www.intellij.com/idea

“This is the editor that gets

out of my way. It’s actually

changed how I write code, after

being fairly set in my ways

about code generation for over

a decade. Going to any other

editor is a chore for me now.”

OOrriioonn AApppplliiccaattiioonn SSeerrvveerr

The Orion Application

Server provides your application

with a foundation that is robust,

scalable, and easy to develop

with.

www.orionserver.com

“Orion, like IDEA, does

things the way I think they

should be done: directly, with

little fuss, and very quickly.

Deployment in Orion is very sim-

ple, and the lack of required

server-specific files means that I

tend to develop on Orion and

deploy on other servers…if I

have to.”

AAnntt ffrroomm AAppaacchhee

Apache Ant is a Java-based build

tool. Ant is extended using Java

classes.

http://ant.apache.org/

“Ant is the hammer of the

Java world: without it, civiliza-

tion might have progressed, but

much more slowly than it has.

Ant is one of the most useful

build tools I have ever had the

pleasure to use.”

Glen Cordrey

J2ME Editor

TThhee PPeerrssoonnaall PPrrooffiillee,, JJSSRR--6622

JSR-62 provides Java APIs

for devices requiring a high

degree of network connectivity

such as applications for the

home and office.

http://wireless.java.sun.com/

personal

“I vote for Personal Profile,

if only for the fact that it was

finally completed. But I also

think it’s a pretty significant,

and good, spec (for a first ver-

sion).”

JJBBoossss

JBoss is a Java application

server developed in open source

known for its ease of use, modu-

larity, and simplicity.

www.jboss.org/index.html

“JBoss provides production

quality for free, although it’s

still a bit rough around the

edges.”

EEcclliippssee

The Eclipse Platform is

designed for building integrated

development environments

(IDEs) that can be used to create

applications as diverse as Web

sites, embedded Java programs,

C++ programs, and Enterprise

JavaBeans.

www.eclipse.org

“Again, free goes a long

way, especially with the support

piling up behind it.”

Jason Briggs

Contributing Editor

JJAAMMiiDD ((JJAAMM iinntteerraaccttiivvee ddeevviiccee))

Based on J2ME MIDP, the

JAMiD accelerated Java platform

will run MIDP 1.0/2.0 games

and other multimedia MIDlets.

Includes a built-in MP3 player.

www.jamid.com

“For bringing J2ME, specifi-

cally MIDP, to the GameBoy

Advance – just plug the JAMiD

cartridge into the GBA and

you’ve got instant access to

MIDP games on your handheld

console.”

NNeettxx

Netx is an implementation

of the Java Network Launching

Protocol (JNLP). It downloads

code over the network for appli-

cations and applets, caches it,

and runs it in a secure environ-

ment.

http://jnlp.sourceforge.net/netx

“For bringing shared appli-

cations to the same VM – some-

thing Sun should have done a

long time ago. Save memory by

launching Web Start-style appli-

cations in the same virtual

machine.”

TToommccaatt ffrroomm AAppaacchhee

Tomcat is the servlet con-

tainer that is used in the official

Reference Implementation for

the Java servlet and JavaServer

Pages technologies.

http://jakarta.apache.org/tom-

cat/index.html

“For ever increasing per-

formance – it’s the one product

that, every time I download a

new version, manages to eke

out a little more performance.”

Enabling Enterprise LinuxEnabling Enterprise LinuxXimian is a registered trademark and Red Carpet and Enterprise
are trademarks of Ximian, Inc. © 2003 All rights reserved.

That’s why Ximian®

created Red Carpet™ Enterprise™,

the secure and centralized solution for enterprise
software management you deploy completely behind
your corporate firewall. It slashes your company's total
cost of ownership by automating software updating
and version control for Linux servers and desktops.
Use it with leading Linux distributions like Red Hat,
SuSE, Mandrake, Debian and more.

Red Carpet Enterprise will change the
way you look at Linux.

Learn more. Get your free copy of
"Linux Software Management 2003" at
www.ximian.com/information/mgmt3

90 June 2003 www.JavaDevelopersJournal.com

JBuilder 9 Integrates All Phases of
Java Application Life Cycle
(Scotts Valley, CA) – Borland Software
Corporation has introduced Borland
JBuilder 9, the latest version of the Java
development solution, accelerating the
development of Java-based applica-
tions for the enterprise. Borland also
introduced Borland Optimizeit Suite
5.5, the latest version of the award-win-
ning Borland performance assurance
solution, engineered to help developers
address performance issues early in the
development life cycle.
www.borland.com

SeeBeyond Delivers First J2EE-
Compatible Integration Platform
(Los Angeles) – SeeBeyond, a global
provider of enterprise integration and
composite application assembly solu-
tions, has announced that it has suc-
cessfully completed the certification
process for Java 2 Platform, Enterprise
Edition 1.3, compatibility with its
SeeBeyond Integrated Composite
Application Network (ICAN) Suite v5.0.
In addition to providing a comprehen-
sive J2EE-compatible integration plat-
form, SeeBeyond is the first vendor to
support the execution of its application
integration functionality on third-party
J2EE-compatible application servers.
www.seebeyond.com

Xora to Deliver Enterprise Application
Data Access via the Sony Ericsson
P800 Smartphone
(Mountain View, CA) – Sony Ericsson’s
P800 Smartphone, featuring
PersonalJava and Java MIDP support,
has been verified with Xora’s J2ME
solution to enable mobile access to
Siebel, Clarify, SAP, PeopleSoft, Oracle,
and other applications using Xora’s

EnterpriseOne mobile platform. The
P800 Smartphone and Xora
EnterpriseOne deliver a turnkey solu-
tion to access any data, any time, any
place.
www.xora.com

Q-Link Version 5.0 Brings J2EE
Development to the Masses
(Los Angeles) – Q-Link Technologies
has announced version 5.0 of their
application development platform
designed to reduce the overall com-
plexity, time, and cost of developing
J2EE applications. The Q-Link platform
brings together three unique elements:
a new application model, a suite of
integrated Business Process
Management (BPM) services, and a
scalable architecture built on stan-
dards-based technologies.
www.qlinktech.com

Quest Releases PerformaSure 2.1
(Irvine, CA) – Quest Software, Inc., a
provider of application management
solutions, has released PerformaSure
2.1, introducing integration with
Quest’s Foglight application monitoring
product. This release features dual-
mode agent technology that enables a
Foglight alert to automatically trigger
deeper J2EE-centric diagnostics.
www.quest.com

Teamstudio Releases Analyzer for
Java Edition 3
(Beverly, MA) – Teamstudio, Inc., a
developer of agile software tools, has
announced the release of Edition 3 of
Teamstudio Analyzer for Java, its
award-winning best-practices audit
tool for Java developers. Edition 3
includes numerous feature enhance-
ments beginning with autofix and
reporting, in addition to 192 rules that
address coding issues such as stan-
dards compliance, unused elements,
common coding errors, and J2EE com-
pliance.
www.teamstudio.com

Netegrity Extends Identity and Access
Management Solution for WebSphere
(Waltham, MA) – Netegrity, Inc., a
provider of identity and access man-
agement solutions, has expanded its
support for IBM WebSphere-based
applications. With this, Netegrity lever-

ages IBM’s Trust Association
Interceptor (TAI) to enable companies
to incorporate their IBM WebSphere
environments, including IBM
WebSphere Application Server and IBM
WebSphere Portal, into a unified and
centrally managed security infrastruc-
ture.
www.netegrity.com

ReportingEngines Launches the
Formula One Product Family
(Overland Park, Kansas) –
ReportingEngines, a division of Actuate
Corporation and provider of embedded
reporting solutions for J2EE Web and
application servers, has announced the
immediate availability of the Formula
One product line. The Formula One
e.Report Engine and e.Spreadsheet
Engine offer developers a full-featured,
reporting toolset that can be embedded
into any Java project or application
deployed from a J2EE Web or applica-
tion server.

The e.Report Engine extracts infor-
mation from a variety of data sources
including Java objects inside applica-
tions, databases, Enterprise JavaBeans
and text files using public APIs. The
e.Spreadsheet Engine is an API-driven
component and report designer used to
embed Excel-compatible spreadsheet
reporting functionality into projects
deployed from J2EE Web or application
servers.
www.reportingengines.com

Mercury Interactive Acquires
Performant
(Sunnyvale, CA) – Mercury Interactive
Corporation, a provider of business
technology optimization, has acquired
Performant, Inc., a provider of compre-
hensive J2EE diagnostics software.
Performant’s technology pinpoints per-
formance problems at the application
code level, reducing the cost and time
required to optimize J2EE applications.
The Performant acquisition allows
Mercury Interactive customers to diag-
nose J2EE performance issues across
the application delivery and manage-
ment cycle from testing through
deployment to operations.

Under the terms of the merger
agreement, Mercury Interactive paid
$22.5 million in cash.
www.mercuryinteractive.com

Industry News

PRESSROOM

J2
SE

H
O

M
E

J2
E

E
J2

M
E

(Santa Clara, CA) – Sun Microsystems, Inc., has released the first Java Card
System Protection Profile. This Protection Profile reduces the time and cost
for Java Card licensees to complete security evaluations under Common
Criteria. Sun will provide a reusable set of security requirements specifically
for the Java Card platform.

Common Criteria was developed in 1996 as a combination of the
Canadian Criteria, Federal Criteria, and Information Technology Security
Evaluation Criteria (ITSEC) to provide standards for security evaluation of IT
products that would be accepted in the international community.
www.sun.com

Sun Introduces the Java Card System Protection Profile

Over 100 participating companies will display and demonstrate
over 300 developer products and solutions.

Over 2,000 Systems Integrators, System Architects, Developers,
and Project Managers will attend the conference expo.

Over 60 of the latest sessions on training, certifications,
seminars, case studies, and panel discussions will deliver

REAL World benefits, the industry pulse and proven strategies.

WEB SERVICES EDGE WEST 2003
CALL FOR PAPERS NOW OPEN

Submit your papers online at:
www.sys-con.com/webservices2003west

Contact information: U.S. Events: 201 802-3069 or e-mail grisha@sys-con.com

PRODUCED BY

International Web Services Conference & Expo

SEPT. 30 - OCT. 2, 2003
S a n t a C l a r a , C A

Focus on Java
Focus on .NET
Focus on WebSphere
Focus on Mac OS X
Focus on XML

For more information visit
www.sys-con.com

or call

201802-3069

BOSTON
February 24-27, 2004

EXTENDING THE ENTERPRISE

WITH WEB SERVICES THROUGH JAVA,

.NET, WEBSPHERE, MAC OS X

AND XML TECHNOLOGIES

WEST
Web Services Edge 2003

Java is a registered trademark of Sun Microsystems, .NET is a registered trademark of Microsoft, Mac OS X is a registered trademark of Apple Computer, Inc.,
WebSphere is a registered trademark of IBM. All other product names herein are the properties of their respective companies.

WebSphere

XML

®

®

92 June 2003 www.JavaDevelopersJournal.com

JBoss – A J2EE-Compliant App Server?
I seriously question how Marc

Fluery can be allowed to declare that
JBoss is a J2EE-compliant application

server (“Pulling at a Thread” by
Alan Williamson [Vol. 8, issue 5]).
Who has certified that it’s compli-
ant? If JBoss is allowed
to make this claim, what
is to stop others from
making it? Why should
those who have paid for
the certification have to

be compared with those who
haven’t? I say to Marc Fluery,
JBoss should either ante up or
drop the pretense that JBoss is a J2EE-
compliant server and stop browbeating
Sun for trying to maintain the J2EE
label.

Kirk Pepperdine
kirk@javaperformancetuning.com

What’s in a Name?
Although Ajit Sagar attempted to

clarify the meanings of “proof-of-con-
cept” and “prototype” in his edito-
rial “The Proof Is in the Concept”
(Vol. 8, issue 5), I have to disagree.
Actually a proof-of-concept ought
to do exactly that: give solid feed-
back on the basic characteristics
of a specific concept. Therefore
any statement with a POC has to
prove it’s dependent on the con-

cept and can’t stand on its own.

Michael Neumann
mn.de@shikou.org

Another Analogy to Consider
It’s like Boeing and Airbus – at any

one time one of them is in the lead but
with so much money on the line they
are always trying to beat each other
(“Do Java and .NET Really Compete” by
Joseph Ottinger [Vol. 8, issue 5]).

Java and .NET are the same
deal as long as Sun/IBM and M$
keep competing; the platforms
will always be close in terms of
functionality and ease of use,
cost, etc. The true winners are
the developer and business.

My advice – everyone should
hedge their bets for maximum

employability – first become a
SQL/XML expert, then learn Java and
C# (should be a relatively easy transi-
tion from either language).

Frank
kellyfj_2000@yahoo.com

MDI in SWT
I developed an application for

my company in Eclipse SWT and
I found it really fast and easy
(“SWT: A Native Widget Toolkit
for Java” by Steve Northover and
Joe Winchester [Vol. 8, issue 4]).
It’s outstanding Java develop-
ment. The point where I got
stuck was MDI things. That made me
roll back for the time being to Swing.
But I’m still actively looking for some
solution to this need. Any comments?

Giriraj
giriraj.srivastava@elementn.com

There is a feature request for MDI.
Go to https://bugs.eclipse.org/bugs/ and
search for PR number 29891. You can
add yourself as a cc to this so you get
notified of updates, and also add your
comments and you can vote for the PR
as well.

Joe Winchester

Some Valid
Points but…

I completely agree
with Nigel Thomas’s
idea of a microkernel
and pluggable modules
for each “technology”
(“Is J2EE Too Big for Its
Own Good?” [Vol. 8,
issue 4]). BEA and JBoss are already
using JMX to do this, though at a very
basic level. However, I don’t think that
fragmenting a complete release is the
right thing to do – it will become even

more of a
mess. There
are interde-
pendencies
between these
modules (EJB,
servlet, JNDI,
etc.) that
would be near

impossible to manage if there was no
unifying process. And I don’t mean
code, I mean specifications, which of
course the code is based on.

Pratik Patel
prpatel@smartframeworks.com

Letters to the Editor

FEEDBACK

J2
SE

H
O

M
E

J2
E

E
J2

M
E

choose a name (like smbA.ser) and pro-
ceed to store the bean.

To demonstrate how easy it is to
include the trained neural network in
an application and use it, I’ve prepared
a simple Java application using
WebSphere Studio Application
Developer. Naturally, you can use what-
ever JRE engine you prefer. The appli-
cation provides a panel in which a
name can be entered. When you hit
Enter/Return, the gender is returned. If
you examine the code, you can see for
yourself how straightforward this is. In
a nutshell, the neural network objects

are restored, the name entered is
parsed to conform to the neural net-
work data representation, the parsed
name is passed to the neural network
as input, and the gender is passed back
as output. As I mentioned earlier, if you
enter a subset or incomplete name (for
example, Adelx instead of Adele), you’ll
see that the neural network still main-
tains reasonable accuracy.

As you can see, the Agent Building
and Learning Environment is as power-
ful as it is easy to learn and use. It puts
the power of decades of artificial intelli-
gence research within easy reach of any
Java developer. In future articles, other
facets of the ABLE framework will be

explored, such as its use to support
autonomic computing applications.

References
• Rumelhart, D., and McClelland, J.

“Parallel Distributed Processing –
Explorations in the Microstructure of
Cognition.” A foundation text on
neural networks. Vol. 1. Foundations.
MIT Press/Bradford Books, 1986.

• IBM Systems Journal, v. 41 no. 3,
2002. Applications of Artificial
Intelligence:
www.research.ibm.com/journal

• IBM Systems Journal, v. 42 no. 1,
2003. Autonomic Computing:
www.research.ibm.com/journal

– continued from page 80Sex Machine Bean

Stay

competi
tive

in toda
y’s

economy
 with

the lat
est

knowledge!

B O S T O N • J U N E 2 7 - 2 9 W E E K E N D , 2 0 0 3

“No Fluff, Just Stuff” Conference
Network withtop experts,forming relationshipsthat will helpyou down the road.

Registration

is limited to

500 people!

Get advice
from the world’s

leading authorities
in J2EE on

critical decisions
your projects
are facing.

Improve yourJ2EE projectswith newfoundbest practices.

We look

forward to

seeing you

there!

TheServerSide.com

You’re Invited...
TheServerSide.com cordially invites you to come join us at TheServerSide Symposium – a special
technical conference on Enterprise Java (J2EE) technologies. If you currently building Enterprise Java
applications or plan to continue doing so in the next few years, this is not a show to be missed!

At this conference, you will learn about:
• Architecture best practices • Open source frameworks and methodologies
• Design Patterns • Web services

This limited-attendance conference is being held at the retreat-like Sheraton Colonial Hotel, near
Boston, Massachusetts. We’ve chosen to hold the conference June 27-29, 2003 - a long weekend,
so that you don’t have to take much time away from work. This means its easier to convince the boss!

The show is unique because it is the only show in the Java industry that promises you will learn an
unbelievable amount of new, useful information about J2EE programming. We have an all-star lineup
of speakers who are making a difference in the enterprise java development community, as well an
extremely technical and advanced set of technical sessions of a nature that are not found at less
specialized or more commercial shows.

Who Will Be There?
TheServerSide Symposium has assembled an incredible team of people who have been contributing to
the enterprise java space and whose work has undoubtedly influenced the way we develop today or
might be developing enterprise applications tomorrow. Among the speakers are:
• People defining the J2EE platform and related technology. J2EE spec lead Mark Hapner,

Web Services JSR 109 Lead Jim Knutson, and other expert group members.
• Major open source project committers/founders. Apache Cactus founder and Struts committer

Vincent Massol, OpenSympony Group founder/core-developer Mike Cannon-Brooks, JBoss 4 lead
architect Bill Burke, and others.

• Authors of important enterprise development books. More than 12 book authors including
Agile/OO writer Scott Ambler, Core J2EE Patterns author John Crupi, Mastering EJB author
Ed Roman, Mark Grand, and others.

• Independent Evangelists and influential research analysts. TheServerSide.com creator
Floyd Marinescu, Java Lobby founder Rick Ross, patterns guy Kyle Brown, Giga Information
Group VP of Research Randy Heffner, web services strategist Anne Thomas Manes, and others.

Why You Should Register Now!
TheServerSide.com has over 250,000 members so we expect this limited attendance event of 500 people
to sell out quickly.

Date: June 27-29 Weekend, 2003
Location: Sheraton Colonial Hotel & Golf Club • Boston, MA
Who Should Attend: Java Developers, Architects, and Technical Managers who are looking for further insight into
J2EE, XML, Web Services, Agile Methodologies, Extreme Programming, and Open Source Software.
Limited Attendance: Attendance is capped at 500 - you must act quickly to ensure your spot at the Symposium.

Registration Information
For more information visit http://www.theserverside.com/symposium?sys1 See you in Boston!

94 June 2003 www.JavaDevelopersJournal.com

elcome to the June edition of the JCP
column! Each month I provide news
and information about the Java
Community Process: newly submitted
JSRs, new draft specs, Java APIs that
were finalized, and other updates from
the JCP. June means it is JavaOne time,
and hence this column will discuss the
conference as well.

The Only Standards Body with a
Version Number!

While the change from JCP 2.1 to
2.5 in October 2002 focused mainly on
legal aspects such as license types for
RI and TCK and the ability to do inde-
pendent implementations, the pro-
posed changes that would form ver-
sion 2.6 of the process focus on the
day-to-day activities in the JCP. This
effort is done via JSR 215. I like to call
out three areas of focus: Community
Review, Expert Group formation, and
TCKs. The proposal is to turn the
Community Review into a public
review (i.e., accessible to all, not just
members) and to move the ballot after
the existing Public Review. The goal is,
this will lead to the JSRs entering the
draft review phase sooner and that
those reviews will receive more feed-
back. The JSR also suggests creating an
observer category for expert groups.
This enables the spec lead to distin-
guish between active participants and
those who just want to stay abreast of
developments while keeping the size of
the group manageable for the spec
lead. And expert group discussions and
design decisions would be visible to
interested JCP members. JSR 215 also
proposes to set minimum TCK require-
ments for each JSR. This should lead to
practical guidance to spec leads about
this mandatory activity and to more
uniformity across the JSRs. You can
read more about this and send in feed-
back at http://jcp.org/jsr/detail/
215.jsp. The Program Office and

Executive Committee members are
very interested in your views.

JCP @ JavaOne
The Program Office is organizing

and hosting various activities and
events at this year’s conference. First,
there’s the Java Community Evening
event on Wednesday, June 11. This is a
joint event with the JINI and JXTA com-
munities and, for the first time, the
Executive Committees and the Program
Office will be presenting JCP awards for
Best Spec Lead and Most Innovative
JSRs. The Program Office will also have
a pod on the exhibition floor that will
provide a great opportunity to meet us
and discuss your favorite elements and
perhaps least favorite aspects of the
JCP. And finally, as part of the confer-
ence, there is a Birds-of-a-Feather ses-
sion on the JCP.

New Developments in J2ME
Recently a handful of new JSRs

were submitted by JCP members.
JSRs 216 and 217 propose to update
both Personal Profile and Personal
Basic Profile to account for the intro-
duction of the Project “Swing” tech-
nology in this space, which I wrote
about last month. JSR 218 proposes
to update CDC with enhanced sup-
port for small electronic devices that
don’t have or don’t require a graphi-
cal user interface. JSR 219 proposes
to provide similar updates to the
Foundation Profile.

Three JSRs did not fare well in
their respective ballots. JSRs 213 and
214 were voted down by the JCP ME
EC members in their JSR Review bal-
lot, while JSR 177 was voted down in
the Community Review ballot. Their
supporters are now preparing for
their respective reconsideration bal-
lots.

Another JSR was added to the col-
lection of completed and final specifi-

cations. JSR 139, CLDC version 1.1, was
declared final and is available for
review and implementation.

News from J2SE and J2EE
The world of Java technology APIs

for the desktop and server space
enjoyed a relatively quiet month (a sign
of many engineers getting ready for the
JavaOne conference?). JSR 151 released
a third Proposed Final Draft specifica-
tion, while J2EE version 1.4 is getting
nearer to final release. JSR 152,
JavaServer Pages specification 2.0, has
also released a third Proposed Final
Draft containing various changes such
as API changes, updates to the Tag
Library Descriptor, I18N updates, and a
few changes to the Expression
Language. JSR 109, Web Services for
J2EE, has entered a second mainte-
nance review.

Ballot Voting Is Public
In this column I’ve spoken a few

times about ballots. The Executive
Committees vote three times during
the life of a JSR on the JSRs assigned to
them:
• At the beginning: JSR Review ballot
• Halfway: Community Review ballot
• At the end: Final Approval ballot.

These ballots are public. To see
how EC members voted on a JSR’s
ballot, go to the JSR’s page on JCP.org
(e.g., http://jcp.org/jsr/detail/215.jsp
for JSR 215) and click on the links in
the status table on the page (in this
example the link called “JSR Review
ballot”). If voting “yes,” comments are
optional. An EC member is required
to enter comments when voting “no”
and encouraged to do so when
abstaining.

That’s it for this month. I am very
interested in your feedback. Please e-
mail me with your comments, ques-
tions, and suggestions.

From Within the
Java Community Process Program
Proposed changes to JCP focus on day-to-day activites

W

JSR WATCH

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Onno Kluyt

Onno Kluyt is the director of the
JCP Program Management
Office, Sun Microsystems.

onno@jcp,org

96 June 2003 www.JavaDevelopersJournal.com

remember well the first time I worked
at a company that used corporate e-
mail. Instead of the usual development
process that involved weekly meetings
with users, between which we wrote
specs and coded deliverables, this new
messaging technology was going to
streamline everything for us.

Unfortunately, the e-mail discus-
sions became so fluid and nebulous
that progress was paralyzed by the
notes flying back and forth. Worse, a
whole new type of project politics
began to occur. Because your visibility
was now measured in terms of the
number of in-box entries you generat-
ed with influential people, second-rate
employees who previously had little
influence or peer respect could now
inflate their image by sending notes
and getting involved in discussions. It
had been years since these media
studies graduates had been able to
contribute in any meaningful way to
software development, and they col-
lectively rued the day they had given
up science for a softer study option
because they failed to grasp basic
euclidian geometry in the sixth grade.

After the rejection letters from law
school and the local newspapers, they
were forced to take up jobs as software
testers, technical writers, or quality
auditors. They were like a dormant cell
waiting for the opportunity to wreak

revenge, and e-mail was their weapon.
The ability to carbon copy notes made
e-mail even more powerful to these
Machiavellian employees, who now
spent hours writing carefully crafted
notes. The recipients of these notes
were carefully selected so the writers
could look good in front of them as
they subtly put down peers with their
superior grasp of corporate buzz-
words.

During the entire morning that the
corporate payroll leeches spent author-
ing their master memos, the rest of the
useful project team were engaged in
more mundane tasks such as writing
and delivering code, assuming naively
that deliverable solutions were what
the company wanted. To the customer
and senior management who were
observers of the trail of back and forth
e-mail, it became clear to them just
who had things figured out on the proj-
ect. “Let’s see what Richard has to say
about situation foo,” because after all
he had so much wisdom about other
project issues, he must be the oracle to
all solutions. When the whole project
went belly up and the bean counters
came in with their axes and marker
pens, it was the programmers who were
fired and the nothingware e-mailers
who kept their jobs.

Alan Turing defined artificial intel-
ligence as when you couldn’t tell the

difference between communicating
with a machine and a person. If the
set of responses you got from either
was indistinguishable, then the
machine had managed to fool you.
Each year IT departments at universi-
ties have a contest to build a real
Turing machine.

I would like to propose a new con-
test, known as Artificial Stupidity. You
write a program that sends unsoliticit-
ed e-mail to announce its presence (a
list of Dilbert cartoons or funny news
stories is a good start), then it should
monitor the e-mails it gets copied on
and write a “Look I’m so smart” reply.
This reply has to include buzzwords
such as “prioritization” or “customer-
focused,” and preferably a few invented
words as well like “responsivitation,”
“architecturalship,” or “subliminabla-
tion.” If you can get the phrase “busi-
ness to customer electronic on demand
commerce” in the reply as well, then
you get awarded a bonus of 50 points
and the Dan Quayle award, a gold-col-
ored plastic potato mounted on a real-
istic granite plinth.

I suggested the idea of the Artificial
Stupidity Award to a colleague at work
and he seemed unimpressed. “We have
some of those contest winners con-
nected to the e-mail server already,”
was his reply. “They work in the human
resources department.”

And the Artificial Stupidity
Award Goes to…

I

FROM THE INSIDE

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Ja
va

 D
ud

es

97June 2003www.JavaDevelopersJournal.com

JSP 2.0 Technology:
The Community Delivers!

JavaServer Pages technology originated more
than four years ago as a powerful way to dynami-
cally generate HTML on the server side. Over time,
and with the input of the developer community,
JSP technology has evolved and matured, keeping
simplicity at the forefront. The next generation of
JSP technology, version 2.0, represents an easy-to-
use, robust, and extensible technology for building
Web applications, well-suited toward generating
dynamic Web content.

Avoid Bothersome Garbage
Collection Pauses

Many engineers complain that the non-deter-
ministic behavior of the garbage collector prevents
them from utilizing the Java environment for mis-
sion-critical applications, especially distributed
message-driven displays (GUIs) where user respon-
siveness is critical. How do we prevent these
garbage collection pauses that interfere with the
responsiveness of an application (“bothersome
pauses”)?

Xlet: A Different Kind of Applet for J2ME
In September 2002, Sun released the J2ME

Personal Profile. Unlike the MIDP, which is the core
technology for Java-enabled wireless phones based
on Connected Limited Device Configuration (CLDC),
Personal Profile is based on the Connected Device
Configuration (CDC). The Xlet application model,
which is inherited from the Personal Basis Profile,
is one of its most important features.

ExtenXLS Java/XLS Toolkit 2.1
by Extentech Inc.

Extentech offers an intuitive, pure Java API for
Excel integration. Under pressure from an anxious
project manager, I evaluated it side-by-side with
two other Java-based Excel integration tools avail-
able on the Web: POI (Apache Software Foundation)
and JExcel. The requirements were for a fast, reli-
able tool that could push data from a Java-based
application server to heavily formatted Excel tem-
plates in either Windows or Solaris operating sys-
tems.

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Altova http://jdj.altova.com/wsdl 33

Asperon Corporation www.asperon.com 20

Basis International www.basis.com 79

BEA Systems, Inc. dev2dev.bea.com/useworkshop 11

BlackHat www.blackhat.com 916-853-8555 75

Borland Software Corporation go.borland.com/j1 4

Canoo Engineering AG www.canoo.com/ulc/ 19

Colorado Software Summit www.softwaresummit.com 800-481-3389 38

Crystal Decisions, Inc www.crystaldecisions.com/cr9/218 800-877-2340 41

Empirix Inc. www.empirix.com/know 866-228-3781 9

Ensemble Systems Inc. www.ensemble-systems.com/glider 877-290-2662 53

ESRI www.esri.com/mapobjectsjava 888-332-2320 37

Extentech www.extentech.com/jdjsale/ 73

Fair, Isaac & Company www.fairisaac.com/rules Cover III

Fiorano Software, Inc. www.fiorano.com 408-354-0846 65

Hewlett-Packard www.hp.com/linux 1-888-hplinux 77

IBM Rational www.rational.com/offer/javacd2 35

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 59

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

InstallShield Software Corp. www.installshield.com/puzzlejdj 47

iSavix http://isavix.net 703-689-3190 81

JavaOne Conference java.sun.com/javaone/sf 83

JetBrains www.intellij.com 13

Jinfonet Software, Inc. www.jinfonet.com/j6.htm 301-838-5560 31

Macromedia www.macromedia.com/go/jrun4jdj 415-252-2000 87

Microsoft Corporation www.microsoft.com/partner/empower 7

Morgan Kaufmann Publishers www.mkp.com 800-545-2522 48

New Atlanta Communications www.newatlanta.com 45

Northwoods Software Corp. www.nwoods.com/go 800-434-9820 70

Oak Grove Systems www.oakgrovesystems.com/jdj 818-880-8769 55

Oracle oracle.com/experts 800-633-1072 17

Parasoft Corporation www.parasoft.com/jdj2 888-305-0041 29

Precise Software www.precise.com/jdj 800-310-4777 23

QUALCOMM Incorporated www.qualcomm.com/brew 63

Quest Software, Inc. http://java.quest.com/jclass/jdj 21

Quest Software, Inc. http://java.quest.com/qcj/jdj 71

Quest Software, Inc. http://java.quest.com/jprobe/jdj Cover IV

RackSaver Inc. http://opteron.racksaver.com 888-942-3800 69

Rational User Conference www.rational.com/ruc 85

RealObjects www.realobjects.com 39

RefactorIT www.refactorit.com 42

ReportingEngines www.reportingengines.com/info/JDJ_June_ere.jsp 888-884-8665 24-25

ReportingEngines www.reportingengines.com/info/JDJ_June_ese.jsp 888-884-8665 57

ReportMill Software www.reportmill.com/webstart 214-513-1636 43

Software FX www.softwarefx.com 49

Sonic Software www.sonicsoftware.com Cover II

Sybase TechWave 2003 www.sybase.com/techwave2003 67

The ServerSide Symposium www.theserverside.com/symposium?sys1 93

WebAppCabaret www.webappcabaret.com/javaone.jsp 61

Web Services Edge West 2003 www.sys-con.com 201-802-3069 91

Ximian, Inc. www.ximian.com/information/mgmt3 89

Zero G www.zerog.com 415-512-7771 3

Zion Software, LLC www.zionsoftware.com/products/jbuddy 51

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Next Month
Since I can predict my downtimes, if I take my network card out, it’s a safe

bet I don’t have a connection. Instead of tackling the rather large problem of
detecting a good network connection, I took a different approach. I started
researching whether I could tell my application that I definitely did not have a
connection. If I could do that, it would be easy to write something that says “If
not connected, then don’t try to perform net-sensitive code,” and that would
take care of the majority of my downtime.

java.net.NetworkInterface: A Road Warrior’s Friend

Why bother with special soft-

ware when I can just code IF

statements in my applications?

Specialized rules software lets you

store, find, and maintain large

numbers of decision points quickly

and easily. You get tools custom-

designed for tracing and debugging

logic flows. The rule engine is pre-

written to handle the complexities

of processing order. And unique

maintenance facilities let you pro-

vide your business users with a

safe and understandable way to

control business logic without code

or syntax.

Isn't a Java rule engine slow?

Fair Isaac Blaze Advisor is opti-

mized to deliver great performance

for different needs. It is the only

rule engine on the market with

selectable operating modes to

choose from Rete-based determi-

nation of which rules to fire,

sequential execution of all rules in

a group, or compiled code execu-

tion for large-scale batch opera-

tions. And throughput is infinitely

scalable by adding independent

engine processing threads.

Can we manage large numbers

of business rules?

Blaze Advisor lets you separate

rules into discrete sets that are

accessed only when called upon in

your application process. You can

segment rules based on functional

task, maintenance needs, or author-

ity levels for modification.

Customers are using Blaze Advisor

right now in applications with

many tens of thousands of defined

rules.

Is rules management software for

developers or business users?

Blaze Advisor brings IT personnel

and business users together with

unprecedented cooperation.

Technical Java developers can create

rule architectures, process flows, and

templates while business users popu-

late the actual logic rules. By creat-

ing automatically-generated rule

maintenance web pages, non-techni-

cal users can have controlled and

secure access to view, create, or

modify rules within the constraints

that you set. And they don't ever

have to see a line of code or a word

of specialized syntax.

Will I have to install a proprietary

database?

Fair Isaac Blaze Advisor has a flexi-

ble repository that works with your

choice of flat files, databases, or

LDAP systems. You can work with

any JDBC database, XML document,

Java class, or COM/.NET object in

addition to building custom data

interfaces to your systems.

Can I still use best programming

practices?

Absolutely! Use strong typing on

objects and properties. Do team-

based development with versioning

and check-in/check-out. Document

your code with system-generated

reports and your own comments on

any object. Use built-in tools to set

breakpoints, trace execution, and
follow object references for impact

analysis. And if you use the Rational

Unified Process®, ask us for our free

business rules plug-in!

Is it expensive?

You can get your feet wet for sur-

prisingly little (call us and ask!).

Then as your needs grow, you can

add additional development seats,

additional production CPU licenses,

and even get enterprise licenses that

bring the cost per user down so low

that you can't afford not to use it!

Is it cost-effective?

Hundreds of companies (including

more than half of Fortune's Top Ten)

have gone through the purchase deci-

sion process and selected Blaze

Advisor for their rules-driven appli-

cations. They are saving time and

money with faster development of

business logic, easier maintenance of

decision points in their applications,

better use of development resources

by offloading business maintenance

tasks to their business groups, and

easier reuse of development work.

How do I find out more?

Send us an email at

edm@fairisaac.com. We'll be happy

to send you a demonstration CD,

answer more detailed questions, set

you up with an eval copy, or arrange

a sales presentation. Have your cell-

phone handy? Call us at 1-800-876-

4900. And don't forget to check out

our website at

www.fairisaac.com/rules to down-

load white papers or register for our

informational web seminars.

Questions AAbout BBusiness RRules?
Fair IIsaac GGives YYou TThe AAnswers

}

Fair Isaac Blaze Advisor lets you create, deploy and modify the rules that drive your

business. Maintained separately from the rest of your system code, business rules give you

unprecedented visibility into and control over logical decisions used throughout your

enterprise. Save time, save money, save yourself headaches with Fair Isaac Blaze Advisor

business rules management. It’s just a smarter way to do businessTM. www.fairisaac.com/rules

Copyright © 2003 Fair Isaac Corporation. All rights reserved. Fair Isaac and It’s just a smarter way to do business
are trademarks of Fair Isaac Corporation in the United States and/or in other countries.

C A N YO U R C O D E

K E E P U P W I T H YO U R

B U S I N E S S G R O U P ?

For more info and a free eval, visit:

http://java.quest.com/jprobe/jdj

JProbe®

Find the cause of J2EE code performance,

memory and threading problems faster than ever

before with JProbe 5.0. New investigative features for

finding memory problems combined with dramatic

performance improvements mean even quicker

resolution of problems in your application, servlet,

JSP and EJB code.

JProbe Suite

JProbe Profiler

JProbe Memory Debugger

JProbe Threadalyzer

JProbe Coverage

Introducing JProbe® 5.0
…now smarter and faster than ever

© 2003 Quest Software, Inc. Quest, Sitraka, PerformaSure and JProbe are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other products are trademarks or registered trademarks of their respective companies.

See us at JavaOne!
Silver Sponsor, Booth #1501

